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Objective: This study addresses the skin cancer classification problem using transfer 
learning, comparing different learning architectures and investigating the effects of pre-
processing techniques and hyperparameter tuning on model performance.
Materials and Methods: Two datasets were used for binary and multiclass classification 
tasks. For binary classification, the International Skin Imaging Collaboration (ISIC) 2019 and 
2020 datasets were utilized, while the ISIC 2019 dataset was used for multiclass classification. 
Pre-processing steps such as DullRazor, Histogram Equalization, and Gamma Correction 
were applied, along with techniques like data augmentation, early stopping, and learning 
rate reduction.
Results: In binary classification, the ResNet50 model achieved the highest performance 
with an accuracy of 0.8869 before hyperparameter tuning, while the Visual Geometry 
Group 16 (VGG16) model outperformed others with an accuracy of 0.9017 after tuning. 
For multiclass classification, DenseNet121 initially showed the best accuracy of 0.8271 
without hyperparameter adjustments. However, after tuning, the VGG16 model again 
delivered the best performance, achieving an accuracy of 0.9292. Additionally, models 
such as ResNet50 and MobileNetV2 also demonstrated strong results, confirming the 
critical role of both pre-processing and hyperparameter optimization in enhancing 
accuracy.
Conclusion: This study demonstrated the effectiveness of transfer learning models 
combined with pre-processing techniques and hyperparameter tuning for skin cancer 
classification. Both classification tasks showed significant performance improvements 
using these methods. The VGG16 model achieved the highest accuracy in both scenarios, 
highlighting its potential for further development in dermoscopy systems to assist 
dermatologists in diagnosing skin cancer. Future research should explore a broader range 
of datasets and refine pre-processing techniques.
Keywords: Classification, deep learning, hyperparameter settings, pre-processing, skin 
cancer, transfer learning.
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INTRODUCTION
The skin is one of the body’s most vital organs, constantly 
exposed to external factors. Therefore, maintaining healthy 
skin and ensuring timely intervention against diseases are of 
vital importance. Skin cancer results from the uncontrolled 
proliferation of skin cells with damaged DNA structures and 
is one of the most common cancers worldwide.1 If detected 
early, skin cancer can be permanently treated, making early 
diagnosis crucial for successful outcomes. However, the 
traditional method of diagnosing skin cancer by visually 
examining lesions with the naked eye reduces detection 
accuracy.2 In contrast, the increasing use of computer-aided 
diagnostic systems has improved diagnostic accuracy.3 
Consequently, with today’s advancing technology, the use of 
deep learning techniques has become increasingly important, 
and image-based classification methods for diagnosing skin 
lesions are becoming more widespread.

Machine learning is advancing rapidly in genomics 
and clinical prediction, with models such as Machine 
Learning Genomics Analysis Platform (ML-GAP), which 
utilize autoencoders and data augmentation to improve 
classification performance.4 Artificial intelligence (AI) also 
contributes to predicting severe hypoglycemia in type 
2 diabetes through multi-view co-training techniques.5 
Additionally, tools like ChatGPT-Enhanced ROC Analysis 
(CERA) are used to optimize biomarker classification.6 In 
dermatology, deep learning, particularly convolutional 
neural networks (CNNs), has significantly enhanced the 
classification and segmentation of skin lesions.7 These AI-
driven advancements are becoming increasingly vital for 
improving the accuracy of skin cancer diagnosis. The most 
effective method for obtaining images of skin lesions is 
through dermoscopy.8 Dermoscopic imaging reduces or 
filters reflections, provides a clearer and enlarged view of the 
lesion, and produces high-resolution images.8 Consequently, 
dermoscopic images are widely used with deep learning 
techniques for skin cancer classification.

Matsunaga et al.9 normalized images by applying brightness 
and color balance adjustments, as well as color constancy 
techniques to their dataset, resulting in improved accuracy. 
Innani et al.10 applied several images preprocessing steps, 
including segmentation, to the PH2 dataset and examined 
the classification results, observing positive effects on model 
performance. Yalçın and Gürsel11 enhanced the images by 
applying preprocessing techniques such as median filtering 
and black-and-white filtering on their dataset, subsequently 
analyzing the performance of deep learning models. Their 
results showed that the models achieved high accuracy. 
Zebari12 applied several preprocessing methods to improve 

image quality, reduce noise, and normalize images in the 
International Skin Imaging Collaboration (ISIC) datasets they 
used. By incorporating feature extraction techniques such as 
Gabor filters and wavelet transformations, they significantly 
boosted model performance.

UdriȘtoiu et al.13 utilized the HAM10000 dataset for seven-class 
classification and demonstrated that data augmentation had 
a positive effect on model accuracy. Hosny et al.14 classified 
skin cancer data using pre-trained deep learning models 
and showed that data augmentation techniques effectively 
improved the model’s generalization performance. Wu et 
al.15 performed classification using transfer learning with 
deep learning models on the ISIC 2019 dataset and applied 
data augmentation to address data imbalance. As a result, 
they achieved high accuracy rates. Naqvi et al.16 focused on 
improving model accuracy by employing preprocessing 
methods and data augmentation techniques, demonstrating 
that these procedures enhanced model performance.

Malo et al.17 proposed a model based on the VGGNet-16 
architecture, using 2,460 skin cancer images from the ISIC 
dataset. Their model achieved strong results, with an accuracy 
of 0.876. Yıldız18 introduced a deep neural network model 
called C4Net, and comparisons with other deep learning 
and traditional machine learning models showed that C4Net 
was more successful. Sun et al.19 applied data processing 
techniques such as image preprocessing, data augmentation, 
and noise reduction in their study. They then classified the 
data using models like CNN, AlexNet, GoogleNet, ResNet, 
and VGGNet, and concluded that deep learning models are 
an effective method for skin cancer classification. Ayan and 
Ünver20 compared the accuracy of several deep learning 
models using the transfer learning method and found that the 
ResNet-34 model provided the best results.

KEY MESSAGES

• Image preprocessing techniques and hyperparameter 
tuning improved the classification performance of 
transfer learning models on skin cancer data.

• The VGG16 transfer learning model, achieving an 
accuracy of 90.17% in binary classification and 
92.92% in multiclass classification, demonstrated the 
most effective results for skin cancer classification and 
holds strong potential for clinical applications.

•  Model performance could be further enhanced with 
larger datasets and more advanced preprocessing 
techniques, offering new opportunities for improving 
skin cancer diagnosis.
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Based on the literature review, the following observations can 
be made:

i) Deep learning algorithms and transfer learning methods 
are frequently used and have proven to be effective 
approaches for the classification of skin cancer image data.

ii) Applying preprocessing techniques to image data has 
a positive impact on the classification performance of 
models.

iii) Due to the limited size of datasets used in skin cancer 
studies and to address data imbalance, the use of data 
augmentation techniques has been shown to improve 
model performance.

In this study, the classification performance of convolutional 
neural networks for skin cancer was examined using the transfer 
learning method. Two different datasets were employed for 
binary and multi-class (seven-class) classification. ISIC 2019 and 
2020 data were used to train and test the network for binary 
classification, while ISIC 2019 data were used for seven-class 
classification. The study focused on classifying both binary 
(benign and malignant) and multi-class skin cancer data, 
specifically the categories of melanoma (MEL), melanocytic 
nevus (NV), basal cell carcinoma (BCC), actinic keratosis (AK), 
benign keratosis-like lesions (BKL), dermatofibroma (DF), 
and vascular lesions (VASC). The main goal of this study was 
to compare different learning architectures and investigate 
the impact of applying specific preprocessing steps and 
adjusting hyperparameters on model performance. To achieve 
this, preprocessing methods such as DullRazor, Histogram 
Equalization, and Gamma Correction, along with techniques 
like data augmentation, early stopping, and learning rate 
reduction, were applied to the data. In this study, transfer 
learning models including VGG16,21 ResNet50,22 InceptionV3,23 
Xception,24 DenseNet121,25 and MobileNetV2,26 as well as a 
custom convolutional neural network model, were used.

MATERIALS AND METHODS
Dataset

In this study, the ISIC 2019 and 2020 datasets were used 
for binary (benign vs. malignant) and multi-class (seven 
categories) classification. For binary classification, ISIC 2019 
and 202027 were used, while ISIC 201928 was utilized for multi-
class classification. Kırğıl and Erdaş29 achieved an accuracy of 
0.835 using ISIC 2019, which was also employed in this study. 
The binary dataset includes 8,100 benign and 6,597 malignant 
samples, as shown in Figure 1. The multi-class dataset consists 
of 12,875 melanocytic nevus, 4,522 melanoma, 3,323 basal 
cell carcinoma, 2,624 benign keratosis, 867 actinic keratosis, 
253 vascular lesions, and 239 dermatofibroma samples (Fig. 
2). The binary dataset was randomly split into 80% training, 

15% testing, and 5% validation sets (Table 1). For multi-
class classification, due to data imbalance, augmentation 
techniques30 were applied to underrepresented classes (VASC, 
DF, AK) to increase each to 2,000 samples, while oversampled 
classes (MEL, NV, BCC, BKL) were downsampled to 2,000. The 
resulting dataset was then split into 80% training, 15% testing, 
and 5% validation sets (Table 2). This study evaluates both 
binary and multi-class classification performance, addressing 
a gap where most previous studies have focused solely on 
multi-class classification.

Figure 1. Distribution of the skin cancer binary classification 
dataset.

Figure 2. Distribution of the skin cancer multiclass 
classification dataset.

Table 1. ISIC 2019 and 2020 skin cancer dataset breakdown 
for binary classification

Cancer 

type

Total Training 

(80%)

Validation 

(5%)

Testing 

(15%)

Benign 8,100 6.640 550 910

Malignant 6.597 5.197 550 850

ISIC: International Skin Imaging Collaboration.
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Pre-Processing
In this study, we examine the importance of preprocessing 
methods and hyperparameter settings to compare the 
performance of transfer learning models on two different 
datasets, each consisting of 80% training, 5% validation, and 
15% testing sets. Hyperparameter optimization refers to 
adjusting the model parameters used in this study, as detailed 
at the end of the preprocessing section. Akyel and Arıcı31 
applied techniques such as noise masks, adaptive thresholding, 
and median filtering as preprocessing methods in their study, 
improving the quality of the data. Similarly, Hermosilla et al.32 
used contrast enhancement and noise reduction techniques to 
improve image quality in their work with the ISIC 2018 and 2019 
datasets. These processes were shown to positively impact 
model classification performance. In our study, we employed 
DullRazor, Histogram Equalization, and Gamma Correction as 
preprocessing methods for the images.

DullRazor is an effective method used to remove thick 
and dull hairs from images.33 Histogram Equalization is a 

commonly used process to enhance contrast or adjust the 
brightness distribution of an image.34 Gamma Correction is 
applied to define the relationship between the numerical 
values of pixels and their actual brightness.35 Figure 3 
shows the processed image obtained after applying 
DullRazor, Histogram Equalization, and Gamma Correction 
to the original image. After preprocessing, hyperparameter 
settings were applied to the images. The setting “image_size 
= 128” resized the width and height of each image to 128 
pixels. The setting “num_channels = 3” specified that the 
images were three-channel color images (RGB: Red, Green, 
Blue). The “batch_size = 32” setting defined the number of 
images processed by the model in each step during training. 
The “initial_lr = 1e-4” setting indicated the learning rate 
used during model training. The “num_epochs = 30” setting 
specified the number of times the model would scan the 
training set from start to finish. Finally, “dropout_rate = 0.5” 
set the probability of randomly disabling a portion of neurons 
during each training step to help prevent overfitting.

Table 2. ISIC 2019 skin cancer dataset breakdown for multiclass classification

Cancer type Total Classification data Training (80%) Validation (5%) Testing (15%)

MEL 4.522 2.000 1.600 100 300

NV 12.875 2.000 1.600 100 300

BCC 3.323 2.000 1.600 100 300

AK 867 2.000 1.600 100 300

BKL 2.624 2.000 1.600 100 300

DF 239 2.000 1.600 100 300

VASC 253 2.000 1.600 100 300

ISIC: International Skin Imaging Collaboration; MEL: Melanoma; NV: Melanocytic nevus; BCC: Basal cell carcinoma; AK: Actinic keratosis; BKL: Benign keratosis lentigo; 
DF: Dermatofibroma; VASC: Vascular lesion.

Figure 3. Pre-processing steps applied to dermoscopy images: 1) Original dermoscopy image; 2) DullRazor-processed image; 
3) Histogram-equalized and gamma-corrected image.
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Transfer Learning 
In our study, transfer learning is used to solve similar 
problems by utilizing models that have been previously 
trained on millions of datasets.36 Instead of starting the 
training process from scratch, the model begins with 
patterns learned during prior training. Çetiner37 performed 
classification using transfer learning with MobileNet models 
in their study. Magsood and Damaševičius38 applied contrast 
enhancement to the data and performed classification using 
transfer learning, achieving very high accuracy rates, such as 
0.9898. This widely used method in the literature has been 
shown to significantly improve model performance. Demir26 
achieved an accuracy rate of 92.2% using the MobileNetV2 
model in their study. In this study, transfer learning models 
commonly used for skin cancer classification, such as 
VGG16, ResNet50, InceptionV3, Xception, DenseNet121, 
and MobileNetV2, were compared with a non-transfer 
learning model (CNN) specifically designed for the task. The 
similarities and differences between these models, based 
on their respective advantages and disadvantages, are 
summarized in Table 3.

Performance Metrics

In this study, accuracy was used as the primary metric to evaluate 
classification results. The confusion matrix, an important tool 
for measuring classification performance, provides a tabular 
visualization of the model’s predictions compared to the reference 
labels. In the method shown in Table 4, the accuracy value given 
in Equation 1 reflects the overall classification performance of 
the model by measuring how many observations, both positive 
and negative, were classified correctly.

Accuracy = (TN + TP) / (TN + TP + FN + FP)1

Table 3. Similarities and differences between the classification algorithms used

Model Advantages Disadvantages

VGG16 - High accuracy after hyperparameter tuning.

- Performs well on balanced datasets.

- Computationally expensive due to high parameter 

count (~138M). 

- Prone to overfitting on small datasets.

ResNet50 - Residual connections prevent vanishing gradients. 

- Good performance even without tuning.

- Requires fine-tuning for optimal accuracy. 

- Higher inference time due to deep architecture.

DenseNet121 - Compact architecture with fewer parameters (~8M). 

- Strong performance on imbalanced datasets due to 

dense connections.

- Longer training time due to feature reuse. 

- More challenging to fine-tune compared to other 

models.

MobileNetV2 - Highly efficient, designed for mobile and low-resource 

environments. 

- Requires less computation power (~3.5M parameters).

- Lower accuracy without tuning. 

- May struggle with complex feature extraction 

compared to deeper networks.

InceptionV3 - Excellent feature extraction for complex patterns. 

- Multi-scale convolution filters improve generalization.

- Prone to overfitting on small datasets. 

- Computationally more expensive than MobileNetV2.

Xception - Efficient handling of complex data structures. 

- Uses depthwise separable convolutions to improve 

efficiency.

- High computational cost due to deep layers. 

- Requires large datasets for optimal performance.

Non-transfer learning - Fully customizable for specific tasks. 

- Can be optimized for the dataset used.

- Lower performance in multi-class classification 

compared to transfer learning models. 

- Requires extensive training to achieve high accuracy.

VGG16: Visual Geometry Group 16; ResNet50: Residual Network 50; DenseNet121: Densely Connected Convolutional Networks 121.

Table 4. Confusion matrix

True value

Positive Negative

Estimated value

Positive TP FP

Negative FN TN

TP: True positives; FP: False positives; FN: False negatives; TN: True negatives.
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RESULTS
In our study, the VGG16, ResNet50, InceptionV3, Xception, 
DenseNet121, and MobileNetV2 transfer learning models, 
along with a custom convolutional neural network model, 
were used to classify skin cancer images. For binary 
classification, the ISIC 2019 and 2020 dataset, consisting 
of 14,697 images categorized as benign or malignant, was 
used. For seven-class classification, the ISIC 2019 dataset, 
consisting of 14,000 images categorized as MEL, NV, BCC, 
BKL, VASC, DF, and AK, was utilized. The main aim of this 
study was to examine the effect of preprocessing and 
hyperparameter tuning on model performance. Therefore, 
the models were tested in two ways: first, to observe the 
results without any modifications, and second, to observe 
the results after applying hyperparameter tuning. Table 5 
presents the test results, including the accuracy rates of the 
transfer learning models before and after preprocessing and 
hyperparameter tuning. Figure 4 shows examples of correct 
classification results for binary classification, while Figure 5 
presents examples for seven-class classification.

In Figure 6, the effect of preprocessing and hyperparameter 
tuning on model performance is graphically presented using 
the accuracy metric. According to Table 5, the following 
conclusions were drawn from the binary and seven-class 
classification test results for all transfer learning models and 

the custom convolutional neural network model, both with 
and without hyperparameter tuning:

i) For binary classification performance, ResNet50 showed 
the best accuracy at 0.8869 when no hyperparameter 
tuning was applied. However, after hyperparameter tuning, 
the VGG16 model achieved the best performance with an 
accuracy of 0.9017.

ii) For multi-class (seven-class) classification, DenseNet121 
demonstrated the best performance with an accuracy of 

Table 5. Binary and multiclass classification results

Algorithm Binary classification Multiclass classification

Performance of transfer learning algorithms on datasets without preprocessing and hyperparameter tuning

VGG16 0.8022 0.7724

ResNet50 0.8869 0.5567

InceptionV3 0.8414 0.7850

Xception 0.8494 0.7996

DenseNet121 0.8823 0.8271

MobileNetV2 0.8339 0.8167

Non-transfer learning model 0.8249 0.4916

Performance of transfer learning algorithms on datasets with preprocessing and hyperparameter tuning

VGG16 0.9017 0.9292

ResNet50 0.8869 0.9024

InceptionV3 0.8500 0.8789

Xception 0.8954 0.8871

DenseNet121 0.8892 0.8296

MobileNetV2 0.8613 0.9028

Non-transfer learning model 0.8380 0.6082

VGG16: Visual Geometry Group 16; ResNet50: Residual Network 50; DenseNet121: Densely Connected Convolutional Networks 121.

Figure 4. Example of a correct classification result for 
the binary classification test case in the model with 
hyperparameter settings.
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0.8271 without hyperparameter tuning. After tuning, the 
VGG16 model achieved the highest performance with an 
accuracy of 0.9292. Additionally, both ResNet50 (0.9024) 
and MobileNetV2 (0.9028) showed strong performance.

iii) Examining the custom convolutional neural network 
model, it achieved a solid performance of 0.8249 for 
binary classification without hyperparameter tuning, 
which improved to 0.8380 after tuning. In seven-class 
classification, its initial performance was lower at 0.4916 
without tuning, but after tuning, the accuracy significantly 
improved to 0.6082.

From the test results, it was observed that applying preprocessing 
and hyperparameter optimization improved performance 
across all models, with a particularly significant impact on the 
multi-class classification task. For both binary and seven-class 
classification, the VGG16 model achieved over 90% accuracy 
after hyperparameter tuning and preprocessing, making it the 
best-performing model and well-suited for the data.

When analyzing the multi-class classification results, it 
was observed that certain classes exhibited high visual 
similarities in the misclassified examples. Additionally, the 
difficulty in learning from classes with low sample sizes 
due to class imbalance negatively impacted classification 
performance.

i) In multi-class classification, the most misclassified classes 
were “Actinic Keratosis (AK)” and “Basal Cell Carcinoma 
(BCC).” It was observed that the model struggled to 
distinguish between these two classes due to the high 
visual similarity of their dermatological images.

ii) Classes with a low number of samples were more prone 
to misclassification. In particular, the error rate was higher 
for the Vascular Lesion (VASC) and Dermatofibroma (DF) 
classes compared to the others.

When analyzing the test results in Table 5, the positive effects 
of preprocessing and hyperparameter optimization on model 
performance were clearly observed.

True: AK
Pred: AK

True: DF
Pred: DF

True: MEL
Pred: MEL

True: NV
Pred: NV

True: VASC
Pred: VASC

True: BCC
Pred: BCC

True: BKL
Pred: BKL

Figure 5. Example of a correct classification result for the multiclass classification test case in the model with hyperparameter 
settings.
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i) Preprocessing techniques (DullRazor, Histogram 
Equalization, and Gamma Correction) enhanced the 
contrast of skin lesions, enabling the model to capture 
visual differences more effectively. 

ii) Hyperparameter optimization, particularly through 
learning rate reduction and early stopping techniques, 
helped reduce overfitting and improved model accuracy. 

iii) The custom-designed CNN model showed lower 
performance in multi-class classification compared 
to transfer learning models (49.16% → 60.82%). This 
indicates that transfer learning models can better 
generalize complex features learned from large pre-
trained datasets.

Finally, hypothesis tests were conducted to determine whether 
the obtained results were statistically significant.

i) The independent sample t-test results indicated that 
the VGG16 model performed significantly better after 
hyperparameter tuning compared to other models 
(p<0.05).

ii) The analysis of variance (ANOVA) confirmed that the effect 
of preprocessing methods on model performance was 
statistically significant.

These statistical test results demonstrate that the model’s 
optimization process is not a random improvement but a 
systematic enhancement.

DISCUSSION
The main objective of this study is to investigate the effect of 
various preprocessing steps and hyperparameter tuning on 
model performance, in order to compare different transfer 
learning architectures. For this purpose, a custom-designed 
CNN model, along with transfer learning models such as 
VGG16, ResNet50, InceptionV3, Xception, DenseNet121, and 
MobileNetV2, was used to perform both binary (benign vs. 
malignant) and seven-class (MEL, NV, BCC, BKL, VASC, DF, AK) 
skin cancer classification. Preprocessing techniques such as 
DullRazor, Histogram Equalization, and Gamma Correction 
were applied, while data augmentation, early stopping, and 
learning rate reduction were used as additional techniques. 
Hyperparameter tuning involved adjustments such as “image_
size = 128”, “num_channels = 3”, “batch_size = 32”, “initial_lr = 
1e-4”, “num_epochs = 30”, and “dropout_rate = 0.5”.

In this study, transfer learning methods for skin cancer 
classification were compared, and the effects of preprocessing 
techniques and hyperparameter tuning on model performance 
were examined. The results indicate that transfer learning 
models can be effectively used for skin cancer diagnosis 
and that accuracy rates can be improved with appropriate 
data processing techniques. As stated in the Results section, 
transfer learning models demonstrated substantial accuracy 
improvements through preprocessing and hyperparameter 
optimization. The obtained results were evaluated by comparing 
them with the accuracy rates reported in the existing literature.

Figure 6. Comparison of transfer learning model results before and after preprocessing and hyperparameter tuning.
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The key contributions of this study are:

i) Preprocessing techniques (DullRazor, Histogram Equalization, 
and Gamma Correction) enhanced model accuracy.

ii) Hyperparameter optimization significantly improved the 
performance of models such as VGG16 and MobileNetV2.

iii) When compared with similar studies in the literature (as 
presented in Table 6), the high accuracy rates obtained 
highlighted the importance of preprocessing and 
hyperparameter tuning in transfer learning models, as well 
as their potential for skin cancer diagnosis.

iv) By addressing both binary and multi-class classification 
tasks and providing a comprehensive analysis of the most 
widely used transfer learning models in the literature, this 
study filled a significant gap in the field.

This study evaluated the effectiveness of transfer learning 
models in skin cancer classification, with a particular emphasis on 
the impact of preprocessing and hyperparameter adjustments 
on model performance. Although many previous studies have 
explored skin cancer using deep learning approaches, the 
achieved accuracy rates have varied considerably depending 
on whether preprocessing techniques were applied, and in 
many cases, the effects of such techniques were not evaluated 
at all. However, this study demonstrates that these techniques 
led to a 5–10% improvement in model accuracy. Furthermore, 
when compared with similar studies in the literature, the 
results of this study surpass previous research, particularly 
in multiclass classification. Considering that earlier studies 
often struggled to achieve high accuracy due to imbalanced 
datasets and the absence of data augmentation, the findings 
presented here are significant. Table 6 summarizes the results 
of similar studies using the models evaluated in this work.

Comparison of Similar Studies and Their Results
Similarities
i) Malo et al.17 achieved an accuracy of 87.60% using a VGG16-

based model. In this study, the VGG16 model showed 
higher performance, achieving an accuracy of 92.92%. 
Nevertheless, both studies confirm the effectiveness of 
VGG16 for skin cancer classification.

ii) Ayan and Ünver20 reported an accuracy of 89.50% using 
the ResNet34 model. In this study, the ResNet50 model 
demonstrated a similar performance with an accuracy of 
90.24%, supporting the strong classification capability of 
the ResNet family. 

iii) Naqvi et al.16 achieved an accuracy of 85.10% using 
the InceptionV3 model. In this study, the InceptionV3 
model reached an accuracy of 87.89%, showing a slight 
improvement while reinforcing the effectiveness of 
InceptionV3 in similar tasks.

iv) Kırğıl and Erdaş29 reported an accuracy of 86.60% using the 
Xception model. In this study, the Xception model achieved 
a higher result with an accuracy of 88.54%, demonstrating 
that hyperparameter optimization and preprocessing 
techniques can lead to slight improvements in performance. 

Differences
v) Ergün and Kılıç25 reached an accuracy of 78.4% using 

the DenseNet121 model. In this study, the DenseNet121 
model achieved a better result, with an accuracy of 88.92%. 
This difference can be attributed to the use of more 
effective preprocessing techniques (DullRazor, Histogram 
Equalization, Gamma Correction) and hyperparameter 
optimization (learning rate tuning, dropout adjustments).

vi) Demir26 achieved an accuracy of 92.20% using the 
MobileNetV2 model. In this study, the MobileNetV2 model 
showed similar performance, with an accuracy of 90.28%. 
The slight decrease in performance could be due to 
differences in dataset composition, class imbalance, and 
variations in preprocessing approaches.

CONCLUSION
In summary, this study provides valuable insights into the use 
of transfer learning for skin cancer classification, demonstrating 
that preprocessing techniques and hyperparameter 
optimization can lead to significant improvements in model 
performance. Further work, including real-world clinical testing, 
will be crucial to fully realize the potential of these models in 
healthcare applications. Despite achieving high accuracy rates 
that contribute to the development of AI-assisted diagnostic 

Table 6. Comparison of the accuracies of similar studies

Model Researchers Accuracy in their studies Accuracy in this study
VGG16 Malo et al.17 87.60% 90.17% (binary), 92.92% (multiple)

ResNet50 Ayan and Unver20 89.50% 88.69% (binary), 90.24% (multiple)

InceptionV3 Naqvi et al.16 85.10% 85.00% (binary), 87.89% (multiple)

Xception Kirgil and Erdas28 86.60% 89.54% (binary), 88.71% (multiple)

DenseNet121 Ergun and Kilic25 78.40% 88.92% (binary), 82.96% (multiple)

MobileNetV2 Demir26 92.20% 86.13% (binary), 90.28% (multiple)
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systems and enable faster, more accurate decision-making in 
skin cancer diagnosis, this study has certain limitations. The 
following solutions are proposed for future similar studies.

Data Balance
i) In the multi-class dataset, some classes (such as VASC, DF, and 

AK) had a low number of samples, and data augmentation 
techniques were applied to balance them. More advanced 
generative neural networks, such as Generative Adversarial 
Networks (GANs), could be used for more effective data 
augmentation. However, to achieve better generalization 
with real-world data, experiments should be conducted 
with larger and more balanced datasets.

Optimization of Transfer Learning Models
i) Although VGG16 provided the highest accuracy, its 

high computational cost makes it inefficient for mobile 
applications. Therefore, an R Shiny web application could 
be developed to make the diagnostic system accessible to 
specialists and integrate it into the healthcare system.

ii) The integration of explainable AI techniques, such as Grad-
CAM, could make the model’s decision-making process 
more transparent. This would allow dermatologists to 
better understand the model’s predictions and make more 
informed decisions regarding its reliability.

Medical Applicability and Clinical Testing
i) The model has not yet been tested in clinical settings for real-

world applications. To enhance its clinical relevance, it should 
be tested by real doctors and validated on a patient basis.
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