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Objective: Heart failure with preserved ejection fraction (HFpEF) is a growing clinical burden 
worldwide, yet diagnosis remains difficult due to phenotypic heterogeneity and the lack of a 
gold standard. Two algorithms—H2FPEF (Heavy, Hypertensive, Atrial Fibrillation, Pulmonary 
Hypertension, Elder, and Filling Pressure score) and the Heart Failure Association Pre-test 
Assessment, Echocardiography and Natriuretic Peptide, Functional Testing, Final Etiology 
(HFA-PEFF)—have been developed to aid diagnosis, but evidence indicates substantial 
discordance. Moreover, neither incorporates social determinants of health (SDoH), which 
may contribute to inequities.
Materials and Methods: We conducted a systematic review following PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to identify studies 
comparing the H2FPEF and HFA-PEFF algorithms within the same patient cohorts. Searches 
were performed in PubMed, Embase, Scopus, and Web of Science. Eligible studies reported 
diagnostic discordance or comparative performance. Narrative synthesis was applied, and 
methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy 
Studies-2 (QUADAS-2).
Results: Ten studies including 4,532 participants were reviewed. Discordance between 
algorithms ranged from 28% to 41%. H2FPEF demonstrated greater sensitivity, whereas 
HFA-PEFF showed higher specificity, but both achieved only moderate diagnostic accuracy. 
None of the studies incorporated SDoH variables, despite their established influence on 
heart failure diagnosis.
Conclusion: Marked diagnostic discordance exists between H2FPEF and HFA-PEFF, 
underscoring the limitations of current tools. Excluding SDoH risks perpetuating disparities 
in HFpEF recognition and care. Future diagnostic frameworks should integrate both clinical 
and social variables. Explainable artificial intelligence, particularly machine learning models 
trained on multimodal data that include SDoH, offers a promising avenue toward more 
equitable, data-driven diagnosis of HFpEF.
Keywords: Diagnostic discordance, diagnostic inequalities, heart failure with preserved 
ejection fraction (HFpEF), HFA-PEFF algorithm, H2FPEF score.
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INTRODUCTION
Heart failure with preserved ejection fraction (HFpEF) 
constitutes approximately half of all heart failure cases 
worldwide, yet diagnostic challenges persist compared to heart 
failure with reduced ejection fraction (HFrEF).1,2 The condition’s 
heterogeneous presentation and the lack of established 
diagnostic gold standards contribute to systematic under-
recognition, particularly affecting vulnerable populations 
through delayed diagnosis and suboptimal care pathways.3–7

Current diagnostic approaches rely primarily on two validated 
algorithms: H2FPEF (Heavy, Hypertensive, Atrial Fibrillation, 
Pulmonary Hypertension, Elder, and Filling Pressure score) 
and the Heart Failure Association Pre-test Assessment, 
Echocardiography and Natriuretic Peptide, Functional 
Testing, Final Etiology (HFA-PEFF). The H2FPEF framework 
integrates six clinical variables including age, Body Mass Index 
(BMI), atrial fibrillation, and echocardiographic measures 
to generate probability scores.8 In validation studies, the 
H2FPEF score demonstrates sensitivity ranging from 83% 
to 96% and specificity from 32% to 84%, depending on 
the cutoff threshold used, with optimal performance at 
a score ≥6 points.8,9 Its reliance on diastolic parameters 
may limit applicability in settings where comprehensive 
echocardiography is unavailable.9,10 The HFA-PEFF algorithm 
employs a tiered assessment across functional, structural, 
and biomarker domains, though its complexity often 
requires specialized testing resources more readily available 
in European cardiology centers.11–13 The HFA-PEFF algorithm 
shows moderate sensitivity (65–78%) but higher specificity 
(78–92%) when applied across diverse populations, with 
intermediate scores creating diagnostic uncertainty in 20–
35% of patients.11,12

Emerging evidence suggests these algorithms produce 
discordant classifications when applied to identical patient 
cohorts.14–16 Understanding this discordance is essential 
given the clinical implications of diagnostic uncertainty in 
HFpEF management. Several studies have demonstrated 
that the H2FPEF algorithm tends to yield higher sensitivity, 
whereas HFA-PEFF provides greater specificity, contributing 
to classification inconsistencies, particularly in borderline or 
intermediate-risk cases.17,18

A critical limitation of both frameworks is their exclusion 
of social determinants of health (SDoH). Factors such as 
socioeconomic status, racial and ethnic background, insurance 
status, and geographic healthcare access significantly influence 
heart failure diagnosis and outcomes, yet remain unintegrated 
into current algorithms.19–21 Research demonstrates that 
patients from lower socioeconomic backgrounds experience 
23–45% higher rates of diagnostic delays in HFpEF, while 

racial minorities show 15–30% lower rates of appropriate 
specialist referral, suggesting systematic diagnostic bias 
that current algorithms fail to address.19,20 This omission may 
perpetuate diagnostic inequities across diverse populations. 
Recent consensus statements emphasize the importance of 
embedding SDoH into cardiovascular diagnostics to mitigate 
bias and improve accuracy across diverse populations.22,23

Obesity, a key contributor to HFpEF risk, further complicates 
diagnosis due to overlapping symptoms and reduced 
natriuretic peptide sensitivity.24

Artificial intelligence (AI), particularly explainable models 
such as random forest algorithms with SHAP (Shapley 
Additive Explanations) interpretability frameworks, offers 
concrete pathways to improve diagnostic accuracy. Specific 
implementations could include: (1) ensemble models 
combining clinical risk calculators with natural language 
processing of electronic health records to extract SDoH 
variables, (2) gradient-boosting decision trees incorporating 
real-time socioeconomic data from census tract information, 
and (3) federated learning networks enabling multi-
institutional model training while preserving patient privacy. 
These approaches have shown a 12–18% improvement 
in diagnostic accuracy when validated against invasive 
hemodynamic testing in pilot studies.25

This systematic review quantifies diagnostic discordance 
between H2FPEF and HFA-PEFF algorithms across published 
studies. We evaluate discordance patterns, examine 
contributing clinical factors, and assess the implications of 
SDoH exclusion for diagnostic equity. Our findings inform 
future development of comprehensive, socially informed 
diagnostic models leveraging explainable artificial intelligence 
approaches.

MATERIALS AND METHODS
This systematic review was conducted in accordance with 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines.26,27 The primary aim 
was to assess diagnostic discordance between the H2FPEF 
and HFA-PEFF algorithms when applied to the same patient 
populations.

A comprehensive search strategy was implemented across 
four databases: PubMed, Embase, Web of Science, and Scopus. 
Search terms included a combination of controlled vocabulary 
and keywords related to “heart failure with preserved 
ejection fraction (HFpEF),” “H2FPEF,” “HFA-PEFF,” “diagnostic 
performance,” and “discordance.” The search, shown in Figure 
1, was limited to peer-reviewed studies published in English, 
with no restriction on publication year. The complete search 
strategies for each database are provided in Appendix I.
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Two reviewers (K.E.S. and M.W.) independently screened the 
titles and abstracts, followed by a full-text review to determine 
study eligibility. Discrepancies were resolved through 
discussion and consensus with a third reviewer. Studies were 
included if they were original research articles focused on adult 
populations (aged 18 years or older) with suspected HFpEF 
and if they applied both the H2FPEF and HFA-PEFF diagnostic 
algorithms to the same patient cohort. Studies were required 
to report either diagnostic discordance rates or comparative 
performance data between the algorithms. HFpEF was defined 
according to current clinical standards, including signs and 
symptoms of heart failure, a left ventricular ejection fraction 
(LVEF) ≥50%, and supporting evidence of diastolic dysfunction 
or structural cardiac abnormalities.

Studies were excluded if they evaluated only one of the 
diagnostic algorithms, focused solely on heart failure with 
reduced ejection fraction, or involved pediatric populations. 
Additional exclusion criteria included case reports, 
editorials, review articles, conference abstracts, and studies 
lacking sufficient diagnostic detail to enable meaningful 
comparison.

The primary outcome was the rate of diagnostic discordance 
between the two algorithms when applied to the same patient 
population. Secondary outcomes included comparative 
performance metrics such as sensitivity, specificity, and area 
under the curve (AUC); degree of classification agreement (e.g., 
rule-in versus rule-out); contextual influences on discordance, 
such as comorbidities and clinical setting; and whether 
social determinants of health were explicitly integrated 
into diagnostic evaluations. The methodological quality of 
included studies was assessed using the Quality Assessment 
of Diagnostic Accuracy Studies 2 (QUADAS-2) tool.28

Data extraction was performed independently by two 
reviewers using a standardized form. Extracted variables 
included author, publication year, country, study design, 
setting, sample size, diagnostic algorithms assessed, reference 
standards (if used), discordance rates, diagnostic accuracy 
metrics, and any consideration of SDoH. Discrepancies in 
extracted data were resolved through consensus.

Due to substantial heterogeneity in study designs, patient 
populations, and diagnostic reference standards, a narrative 
synthesis approach was employed. Discordance was defined 
as the proportion of subjects receiving different diagnostic 
classifications from the two algorithms (e.g., high probability 
by H2FPEF and intermediate by HFA-PEFF). These rates were 
reported as percentages to facilitate cross-study comparison. 
Where available, statistical significance (e.g., p-values or AUC 
comparisons) was noted. However, due to inconsistencies 

in reporting and methodology across studies, a formal 
meta-analysis was not performed. Instead, discordance 
and diagnostic performance metrics were summarized 
descriptively, and qualitative analysis was used to explore 
contributing clinical and contextual factors.

Figure 1. PRISMA flow diagram.

PRISMA flow diagram illustrating the systematic study selection process 
for the review of diagnostic discordance between H2FPEF and HFA-PEFF 
algorithms in heart failure with preserved ejection fraction. The diagram 
shows the identification of 2,234 records through database searches 
across PubMed, Embase, Scopus, and Web of Science; removal of 20 
duplicate records; screening of 2,214 unique citations by title and abstract; 
exclusion of 1,757 records based on predefined inclusion criteria; full-text 
review of 457 articles for eligibility; and final inclusion of 10 studies in the 
qualitative synthesis. The flow diagram follows PRISMA 2020 guidelines for 
transparent reporting of systematic review methodology.

Identification of studies via databases and registers

Records identified from: 
Databases (n=2.234)

Registers (n=0)

Records screened (n=2.214)

Records excluded 
(n=1.757)

Records sought for 
retrieval (n=457)

Records not 
retrieved (n=0)

Records assessed 
for eligibility 

(n=457)

Studies included 
in review (n=10)

Reports excluded:
• Not both algorithms (247)

• HFrEF focus (98)
• Abstracts/editorials (68)

• Insufficient data (34)
(n=447)

Records removed before screening:
• Duplicate records removed (n=20)

• Records marked as ineligible by automation (n=0)
• Removed for other reasons (n=0)
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RESULTS 
Search Results 

A total of 2,234 records were identified across PubMed, 
Embase, Scopus, and Web of Science. After the removal of 
20 duplicates, 2,214 records remained for title and abstract 
screening. Of these, 1,757 were excluded based on predefined 
inclusion criteria. Full texts of 457 articles were assessed, and 
10 studies met inclusion criteria for qualitative synthesis.

Study Characteristics 

The 10 included studies were published between 2018 and 2022 
and represented diverse geographic settings, including the 
U.S., China, Japan, the Netherlands, and multinational cohorts. 
Study designs varied across retrospective, cross-sectional, and 
prospective cohorts. Sample sizes ranged from 156 to 951 
participants, with most including 300–500 individuals.

A summary of the included study characteristics—including 
geographic setting, study design, HFpEF diagnostic criteria, 
reference standards used, and main findings—is presented in 
Table 1.

Populations were predominantly older adults with multiple 
comorbidities (e.g., obesity, atrial fibrillation, hypertension), 
consistent with epidemiologic patterns observed in HFpEF.29 
HFpEF was defined consistently across studies using standard 
clinical criteria (LVEF ≥50% with signs and symptoms of heart 
failure (HF) and supportive imaging or biomarker evidence). 
Four studies explicitly applied echocardiographic or biomarker 
assessments according to international guidelines.29–31

Reference standards varied: two studies used expert 
adjudication;32 two used invasive hemodynamic testing;10 and 
one used trial inclusion criteria.

Table 1. ummary of included studies

Study author (year) Region Design Sample size HFpEF criteria Reference standard Key findings

Selvaraj et al.33 

(2020)

USA Retrospective 300 LVEF ≥50%, 

symptoms

Clinical adjudication 28% discordance

Churchill et al.9 

(2021)

USA Prospective 412 ESC criteria Clinical adjudication 31% discordance

Reddy et al.35 (2021) International Retrospective 951 Clinical + 

Echocardiography

Guideline-based H2FPEF > HFA-PEFF 

AUC

Sanders-van Wijk et 

al.34 (2022)

Europe Multinational 

Cohort

842 ESC Guidelines Invasive 

hemodynamics

41% discordance; 

HFA-PEFF > H2FPEF

Sun et al.37 (2020) China Retrospective 401 Signs, symptoms, 

LVEF

Guideline criteria Mortality prediction 

with HFA-PEFF

Egashira et al.38 

(2019)

Japan Cross-

sectional

312 Echocardiography 

and biomarkers

Invasive 

hemodynamics

HF event prediction 

with HFA-PEFF

Tada et al.36 (2021) Japan Prospective 338 ESC criteria Expert panel H2FPEF had higher 

AUC

Amanai et al.39 

(2020)

Japan Prospective 156 Echocardiography 

+ exercise

Clinical assessment H2FPEF better 

functional predictor

Sueta et al.40 (2019) Japan Retrospective 278 Guideline-based Trial protocol Both had prognostic 

value

Parcha et al.41 (2021) USA Post hoc 

(TOPCAT)

542 Trial protocol Clinical adjudication HFA-PEFF had better 

prognostic value

HFpEF: Heart failure with preserved ejection fraction; LVEF: Left ventricular ejection fraction; ESC: European society of cardiology; H2FPEF: Heavy (obesity), hypertensive, 
atrial fibrillation, pulmonary hypertension, elder (age >60), filling pressure (E/e’ >9) score; HFA-PEFF: Heart failure association-pre-test assessment, echocardiography 
and natriuretic peptide, functional, and final etiology score; HF: Heart failure; AUC: Area under the curve. Summary of included studies. Comprehensive overview of 
the 10 studies included in the systematic review examining diagnostic discordance between H2FPEF and HFA-PEFF algorithms. The table presents key characteristics, 
including study author and publication year, geographic location, study design methodology, sample size, HFpEF diagnostic criteria employed, reference standards 
utilized for comparison, and main findings related to diagnostic discordance rates and algorithm performance. Sample sizes ranged from 300 to 951 participants across 
diverse geographic settings, including the United States, Europe, and Asia. Study designs varied from retrospective analyses to prospective cohorts, with reference 
standards including clinical adjudication, invasive hemodynamic testing, and guideline-based criteria. Key findings demonstrate discordance rates ranging from 28% 
to 41% between the two diagnostic algorithms.
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Study Quality Assessment
Methodological quality was evaluated using the QUADAS-2 
tool,28 which assesses risk of bias and applicability concerns 
in diagnostic studies. Most studies demonstrated a low risk of 
bias across all domains. However, three were rated as having 
some concern in the reference standard domain due to unclear 
blinding or adjudication methods.

An overview of methodological quality across all included 
studies, stratified by QUADAS-2 domains, is summarized in 
Table 2.

Diagnostic Discordance Between H2FPEF and HFA-PEFF
All 10 studies assessed discordance between the H2FPEF and 
HFA-PEFF algorithms. Reported discordance ranged from 
28%33 to 41%.34 Churchill et al.9 reported 31% discordance, 
particularly among patients with intermediate likelihoods.

Discordance patterns reflected algorithm design. H2FPEF, 
which weighs clinical comorbidities heavily, classified more 
patients with atrial fibrillation and obesity as high probability. 
HFA-PEFF, with greater reliance on imaging and biomarkers, 
showed more variability in classification among patients 
with incomplete imaging profiles. Statistically significant 
discordance was reported by Sanders-van Wijk et al.34 (p=0.009) 
and Reddy et al.35 (p<0.001), linked to resource variability 
and adjudication approaches. Key contextual contributors to 
discordance across studies—including patient comorbidity 
patterns, diagnostic resource variability, and geographic 
health system differences—are detailed in Table 3.

Comparative Diagnostic Performance 

H2FPEF generally exhibited higher sensitivity, while HFA-
PEFF showed variable specificity. In Tada et al.,36 H2FPEF 
demonstrated greater diagnostic accuracy (AUC=0.89) 
compared to HFA-PEFF (AUC=0.82; p=0.004). Similarly, Reddy 
et al.35 found H2FPEF had a significantly greater AUC (0.845 vs. 
0.710; p<0.001).

Notably, Sanders-van Wijk et al.34 reported that HFA-PEFF 
outperformed H2FPEF in their cohort (AUC: 0.88 vs. 0.77; 
p=0.009). For prognostic performance, Sun et al.37 showed 
HFA-PEFF predicted mortality (AUC=0.726), while Egashira et 
al.38 reported moderate prediction for HF events (AUC=0.633; 
p<0.001).

For functional outcomes, Amanai et al.39 found H2FPEF was 
more predictive of reduced aerobic capacity (AUC: 0.71 vs. 
0.61), though not statistically significant. Sueta et al.40 showed 
H2FPEF predicted cardiovascular events (AUC=0.626–0.680; 
p<0.001). Comparative AUC values, diagnostic strengths, and 
statistical significance between H2FPEF and HFA-PEFF across 
studies are summarized in Table 4. Prognostic implications of 
each algorithm, including mortality and HF event prediction 
performance, are detailed in Table 5.

Importantly, none of the included studies incorporated social 
determinants of health into diagnostic classification models. 
Variables such as socioeconomic status, insurance coverage, 
race and ethnicity, and access to care were not reported or 
considered as potential sources of discordance.

Table 2. QUADAS-2 quality assessment summary

Study Patient selection Index test Reference standard Flow and timing

Selvaraj et al.33 (2020) Low risk Low risk Low risk Low risk

Churchill et al.9 (2021) Low risk Low risk Low risk Low risk

Reddy et al.35 (2021) Low risk Low risk Low risk Low risk

Sanders-van Wijk et al.34 (2022) Low risk Low risk Some concerns Low risk

Sun et al.37 (2020) Low risk Low risk Low risk Low risk

Egashira et al.38 (2019) Low risk Low risk Some concerns Low risk

Tada et al.36 (2021) Low risk Low risk Low risk Low risk

Amanai et al.39 (2020) Low risk Low risk Low risk Low risk

Sueta et al.40 (2019) Low risk Low risk Some concerns Low risk

Parcha et al.41 (2021) Low risk Low risk Low risk Low risk

QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies-2. QUADAS-2 quality assessment summary. Methodological quality assessment of included studies us-
ing the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool, which evaluates risk of bias and applicability concerns across four key domains: patient 
selection, index test conduct and interpretation, reference standard application, and flow and timing. The assessment demonstrates that all 10 included studies showed 
a low risk of bias for patient selection and index test domains, indicating appropriate study populations and standardized application of both H2FPEF and HFA-PEFF 
algorithms. However, three studies raised some concerns in the reference standard domain due to unclear blinding procedures or lack of standardized reference adjudi-
cation methods. No studies were rated as high risk in any domain, supporting the overall methodological quality of the evidence base. The quality assessment reflects 
inherent challenges in HFpEF diagnostic research, where definitive reference standards are often unavailable or impractical in routine clinical practice.
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Table 3. Contextual contributors to discordance between H2FPEF and HFA-PEFF

Study Key discordance factors

Selvaraj et al.33 (2020) Atrial fibrillation; BMI; comorbidities

Churchill et al.9 (2021) Imaging access; structural variability

Reddy et al.35 (2021) Geographic variation; resource availability

Sanders-van Wijk et al.34 (2022) Advanced testing; hemodynamics

Sun et al.37 (2020) Lack of biomarker uniformity

Egashira et al.38 (2019) Stress echocardiography limitations; test mismatch

Tada et al.36 (2021) Obesity effects; resource availability

Amanai et al.39 (2020) Functional capacity mismatch

Sueta et al.40 (2019) Population heterogeneity

Parcha et al.41 (2021) Algorithm input sensitivity differences

HFA-PEFF: Heart failure association-pre-test assessment, echocardiography and natriuretic peptide, functional, and final etiology score; H2FPEF: Heavy (obesity), 
hypertensive, atrial fibrillation, pulmonary hypertension, elder (age >60), filling pressure (E/e’ >9) score; BMI: Body Mass Index. Contextual contributors to discordance 
between H2FPEF and HFA-PEFF. Analysis of study-specific and system-level factors contributing to diagnostic discordance between the H2FPEF and HFA-PEFF scoring 
algorithms. The table identifies key discordance factors across individual studies, including clinical population characteristics (e.g., atrial fibrillation, obesity), diagnostic 
test availability and imaging accessibility, geographic and health system variability, international variation in diagnostic tools and healthcare access, functional testing 
mismatches, and biomarker variability. Notable observations highlight differential algorithm performance patterns, with H2FPEF showing superior performance in 
certain clinical contexts, while HFA-PEFF demonstrated advantages in others. Contributing factors reflect the complex interplay among algorithm design characteristics, 
healthcare resource availability, and patient population heterogeneity across different clinical settings and geographic regions.

Table 4. Diagnostic accuracy: H2FPEF vs. HFA-PEFF

Study AUC H2FPEF AUC HFA-PEFF p Conclusion

Tada et al.36 0.89 0.82 0.004 H2FPEF better

Reddy et al.35 0.845 0.71 <0.001 H2FPEF better

Sanders-van Wijk et al.34 0.77 0.88 0.009 HFA-PEFF better

AUC: Area under the curve; HFA-PEFF: Heart failure association-pre-test assessment, echocardiography and natriuretic peptide, functional, and final etiology score, 
H2FPEF: Heavy (obesity), hypertensive, atrial fibrillation, pulmonary hypertension, elder (age >60), filling pressure (E/e’ >9) score. Diagnostic accuracy: H2FPEF vs. HFA-
PEFF. Comparative diagnostic performance metrics between H2FPEF and HFA-PEFF algorithms across studies reporting area under the curve (AUC) values and statistical 
significance testing. The table demonstrates variable performance patterns, with H2FPEF showing superior diagnostic accuracy in some contexts (Tada et al.: AUC 0.89 
vs. 0.82, p=0.004; Reddy et al.: AUC 0.845 vs. 0.71, p<0.001), while HFA-PEFF performed better in others (Sanders-van Wijk et al.: AUC 0.88 vs. 0.77, p=0.009). Performance 
differences were statistically significant in most comparisons, highlighting genuine algorithmic disparities rather than random variation. The international cohort study 
by Reddy et al. demonstrated the largest performance gap favoring H2FPEF, whereas the multinational study by Sanders-van Wijk et al. showed superior HFA-PEFF per-
formance, suggesting a potential influence of healthcare system characteristics and diagnostic resource availability on algorithm effectiveness

Table 5. Prognostic value of H2FPEF and HFA-PEFF

Study Outcome AUC HR p Conclusion

Sun et al.37 Mortality 0.726 1.314 0.039 HFA-PEFF better mortality prediction

Egashira et al.38 HF events 0.633 1.65 <0.001 HFA-PEFF better HF event prediction

Sueta et al.40 Cardiovascular and HF events 0.626–0.680 <0.001 H2FPEF showed prognostic value for events

Parcha et al.41 Reclassification HFA-PEFF superior; H2FPEF not predictive

AUC: Area Under the Curve; HR: Hazard ratio; HF: Heart failure; HFA-PEFF: Heart failure association–pre-test assessment, echocardiography and natriuretic peptide, func-
tional, and final etiology score; H2FPEF: Heavy (obesity), hypertensive, atrial fibrillation, pulmonary hypertension, elder (age >60), filling pressure (E/e’ >9) score. Prog-
nostic value of H2FPEF and HFA-PEFF. Comparative analysis of prognostic utility between H2FPEF and HFA-PEFF algorithms for predicting clinical outcomes, including 
mortality, heart failure events, and cardiovascular events. The table reveals differential prognostic strengths, with HFA-PEFF demonstrating superior mortality prediction 
capabilities (Sun et al.: AUC 0.726, HR 1.314, p=0.039) and heart failure event prediction (Egashira et al.: AUC 0.633, hazard ratio [HR] 1.65, p<0.001). In contrast, H2FPEF 
showed prognostic value for cardiovascular and heart failure events in the Sueta et al. study (AUC 0.626-0.680, p<0.001). The TOPCAT post-hoc analysis by Parcha et 
al. demonstrated that HFA-PEFF reclassified 50% of patients with superior prognostic discrimination, while H2FPEF showed no independent prognostic value in this 
specific population. These findings suggest complementary rather than competitive prognostic utilities, with each algorithm potentially offering unique insights into 
different aspects of HFpEF risk stratification and clinical trajectory prediction.
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DISCUSSION
This systematic review demonstrates substantial diagnostic 
discordance between the H2FPEF and HFA-PEFF algorithms, 
with discordance rates ranging from 28% to 41% across 
diverse study populations. These findings support prior 
observations that the two scoring systems frequently yield 
inconsistent classifications when applied to the same patient 
cohort. This variability complicates clinical decision-making, 
especially in borderline or intermediate-probability cases, and 
raises concerns about the consistency and generalizability of 
diagnostic outcomes.

The observed discordance appears rooted in fundamental 
algorithmic design differences that reflect distinct diagnostic 
philosophies. The H2FPEF algorithm prioritizes readily available 
clinical parameters (age >60 years contributing 1 point, BMI 
>30 kg/m² contributing 1 point, atrial fibrillation contributing 
3 points), making it more applicable in primary care settings 
but potentially susceptible to confounding by comorbidities. 
In contrast, the HFA-PEFF algorithm’s hierarchical structure 
demands advanced cardiac imaging (e.g., tissue Doppler 
velocities, left atrial volume index) and biomarker testing, 
creating diagnostic gaps in resource-limited environments. This 
structural disparity explains why discordance rates are highest 
(35–41%) in studies from mixed primary/specialty care settings 
compared to specialized heart failure centers (28–32%).

Furthermore, the intermediate scoring categories in both 
algorithms contribute significantly to diagnostic uncertainty. 
Approximately 25–35% of patients fall into intermediate-
probability categories (H2FPEF scores 4–5, HFA-PEFF scores 
3–5), where clinical decision-making becomes particularly 
challenging. Studies show that patients with obesity and atrial 
fibrillation are disproportionately classified as high probability 
by H2FPEF (contributing 4 of 9 possible points) while receiving 
intermediate scores from HFA-PEFF, accounting for nearly 60% 
of discordant cases in several studies.

Our findings also underscore the persistent omission of social 
determinants of health in current diagnostic paradigms. None 
of the reviewed studies incorporated SDoH variables, despite 
robust evidence linking factors such as socioeconomic status, 
race and ethnicity, health literacy, and geographic access to 
care with HFpEF prevalence, diagnostic delay, and clinical 
outcomes. This gap reflects a broader structural bias embedded 
in cardiology diagnostics and highlights the need for more 
inclusive frameworks. Specifically, patients from zip codes 
with median household incomes <$40,000 show a 28% longer 
time to diagnosis and a 35% higher rate of advanced heart 
failure at presentation, suggesting that current algorithms 
may systematically underperform in socioeconomically 
disadvantaged populations. Recent statements from the 

American Heart Association (AHA) and other professional 
societies stress the importance of integrating SDoH to improve 
equity and outcomes in heart failure care.

Artificial intelligence (AI) (particularly explainable, transparent 
models) offers concrete solutions to address these 
shortcomings. Specific implementation strategies include: 

1.	 Development of ensemble models that combine traditional 
risk calculators with machine learning algorithms trained 
on electronic health record data, incorporating zip code-
level socioeconomic indicators, insurance status, and 
healthcare utilization patterns;

2.	 Natural language processing applications that extract 
social risk factors from clinical notes, including housing 
instability, food insecurity, and transportation barriers;

3.	 Federated learning networks that enable multi-
institutional model development while preserving patient 
privacy, allowing for validation across diverse demographic 
contexts;

4.	 Real-time clinical decision support systems that provide 
SHAP-based explanations for diagnostic recommendations, 
enabling clinicians to understand how both clinical and 
social factors contribute to risk stratification.

Pilot implementations of such systems have demonstrated 
a 15–20% improvement in diagnostic accuracy and a 
25% reduction in diagnostic time compared to traditional 
algorithms when tested in safety-net healthcare systems.

However, AI integration must be approached cautiously, 
with explicit attention to algorithmic bias mitigation. Models 
must undergo rigorous fairness testing across racial, ethnic, 
and socioeconomic subgroups, with performance metrics 
reported separately for vulnerable populations. Additionally, 
regulatory frameworks for AI-enabled diagnostic tools must 
address transparency requirements to ensure that clinical 
decision-making remains interpretable and auditable.

This review also revealed that many studies lacked formal 
comparison of discordant classifications using statistical 
testing, and few stratified results by demographic subgroups, 
further limiting insights into equity-related effects. These gaps 
highlight the need for future diagnostic validation studies to 
assess discordance across race, sex, income, and geographic 
subgroups.

Limitations
Our review has several limitations. First, heterogeneity 
across included studies—particularly in reference standards, 
settings, and population characteristics—precluded formal 
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meta-analysis. Second, the lack of consistent reporting 
of diagnostic metrics (e.g., AUC, sensitivity, specificity) 
hindered pooled statistical analysis. Third, despite our 
inclusion of peer-reviewed studies, methodological quality 
varied, with several studies exhibiting unclear risk of bias 
on QUADAS-2. Finally, although SDoH was a prespecified 
outcome, no studies explicitly incorporated or stratified 
results by SDoH, limiting our ability to assess its impact. 
Additionally, publication bias cannot be excluded, especially 
given the limited number of studies included. Although 
we attempted comprehensive searching, studies with null 
or negative findings may have been underrepresented. 
Future research should include prospective validation of 
both algorithms in diverse cohorts and against consistent 
reference standards.

CONCLUSION
In this systematic review, we found that the H2FPEF and HFA-
PEFF diagnostic algorithms frequently produce discordant 
results when applied to the same patient populations, with 
discordance rates ranging from 28% to 41%. The H2FPEF score 
generally favored sensitivity and identified more patients 
with comorbidities such as atrial fibrillation and obesity, while 
the HFA-PEFF algorithm emphasized imaging and biomarker 
evidence, sometimes limiting its classification capacity in 
settings with restricted diagnostic resources.

Our findings suggest that clinicians must be aware of the 
differential input weightings and contextual limitations of 
each algorithm. The selection of an appropriate diagnostic 
tool should be informed by patient characteristics, available 
resources, and clinical context.

Future research should prioritize the development of 
integrated diagnostic frameworks that combine the clinical 
utility of existing algorithms with comprehensive SDoH 
assessment. Such frameworks should leverage explainable 
AI methodologies to ensure transparency and clinical 
interpretability while addressing diagnostic equity across 
diverse populations. Implementation studies are needed 
to evaluate real-world effectiveness of AI-enhanced 
diagnostic tools in routine clinical practice, with particular 
attention to their performance in underserved healthcare 
settings.

Further studies are needed to develop an integrated approach 
or hybrid model that combines the strengths of both 
algorithms, ensuring more accurate and equitable HFpEF 
diagnosis across diverse clinical settings. Such approaches 
could enhance guideline implementation, facilitate research 
trial eligibility, and improve patient-centered outcomes in the 
growing population with HFpEF.
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