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Objective: Endometrial cancer (EC) is the most frequent gynecological malignancy in
women worldwide. This study aims to develop a predictive model integrating machine
learning (ML) approaches with explainable artificial intelligence (XAl) using metabolomics
panel data for significant biomarker discovery in EC.

Materials and Methods: This study applied metabolomics and XAl to uncover diagnostic
biomarkers for EC, the most common gynecologic malignancy. A total of 191 EC cases
and 204 controls were analyzed using mass spectrometry. ML and XAl techniques were
incorporated, including SHapley Additive exPlanation, Random Forest, BaggedCART,
LightGBM, Adaptive Boosting, and Extreme Gradient Boosting.

Results: Statistically significant differences (adjusted p<0.05) were found in 25 metabolites. Effect
sizes (ES) of m/z=219.125 (ES=1.516), m/z=672.6961 (ES=0.913), and m/z=203.1564 (ES=0.839)
were notably large, suggesting strong discriminatory ability. These metabolites are involved
in lipid dysregulation, steroid hormone pathways, and oxidative stress, reflecting cancer-
specific metabolic reprogramming. The ML models, particularly LightGBM, demonstrated high
accuracy and good calibration. After training with the final feature dataset, SHapley Additive
exPlanations (SHAP) analysis identified m/z=219.125, m/z=672.6961, and m/z=127.0769 as the
top contributing features, aligning with their biological impact on EC pathogenesis.

Conclusion: This study suggests non-invasive biomarkers for early detection of EC
screening, highlighting the heterogeneity of metabolic adaptation in EC and the need for
multi-omics approaches to understand disease mechanisms. Limitations include diverse
cohorts and reliance on tandem mass spectrometry. Nonetheless, these findings represent
a step forward in precision oncology.

Keywords: Biomarker discovery, endometrial cancer, explainable artificial intelligence (Al),
machine learning, metabolomics.

INTRODUCTION

Endometrial cancer (EC) is the most common gynecologic malignancy in women worldwide,
with an estimated 417,000 new cases and 97,000 deaths per year.! The incidence of the disease is
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increasing, particularly in developed countries, due to rising
rates of obesity, physical inactivity, and aging populations.
Approximately 40-50% of EC cases result from obesity,
through its association with unopposed estrogen levels and
potentially insulin resistance.? This trend is concerning, as
younger patients often present with aggressive EC subtypes
and poor prognosis. Ultrasound-based distinction s
challenging; therefore, early and precise diagnosis is critical.
The CA-125 biomarker has limited diagnostic utility, with an
area under the curve (AUC) of 0.610-0.684.% This limitation
underscores the urgent need for novel diagnostic tools to
improve sensitivity and specificity.

Metabolomics investigates tumor metabolic patterns in
EC using tools such as the National Metabolomics Data
Repository (NMDR) 2024, revealing increased glucose
utilization and dysregulation of amino acids and lipids.
Lipidomics has identified early-warning metabolites, such
as phosphatidylcholines and sphingomyelins, which may
indicate endothelial failure before symptoms appear. Studies
show that EC cancers consume more branched-chain amino
acids and generate excess glycolytic byproducts, thereby
altering pathways and enhancing resistance to apoptosis.**

Recent investigations have confirmed the promise of
metabolomics in EC diagnosis. PELDI-MS (ProteinChip®-
based Surface-Enhanced Laser Desorption/lonization Mass
Spectrometry) has identified serum metabolic fingerprints
with an AUC of 0.87-0.93, while other studies have reported
alterations in glutamine and amino acid metabolism
associated with prognosis and treatment outcomes. Machine
learning, namely AutoML-XAI, has expanded these discoveries
by emphasizing transparent and effective computational
models.3%” Our study builds directly upon these advancements
by applying a suite of robust ML models and XAl to an
independent cohort, aiming to both validate and refine the
search for the mostimpactful metabolic biomarkers for EC. This
biological plausibility is grounded in the well-characterized
metabolic reprogramming that underpins EC pathogenesis.
Metabolic disturbances in EC are driven by obesity and
unopposed estrogen. Estrogen enhances lipid synthesis, while
insulin resistance associated with obesity alters glucose and
fatty acid metabolism. Metabolomics may reveal dysfunctions
in pathways and biomarkers unique to diseases by detecting
lipogenesis, hormone imbalance, and oxidative stress.??

Research demonstrated the ability of serum metabolic
fingerprints (SMFs), tested with PELDI-MS mass spectrometry,
to distinguish EC conditions from non-EC conditions.> More
recent studies show that understanding how EC patients
alter sugar and fat metabolism helps doctors develop
better personalized diagnoses.’® The metabolic pathways of

504

J Clin Pract Res 2025;47(5):503-511

KEY MESSAGES

+ Robust metabolic biomarkers for endometrial cancer
diagnosis were identified using a machine learning-
integrated explainable artificial intelligence model.

« The LightGBM machine learning model offered
reliable diagnostic potential.

+ SHAP (SHapley Additive exPlanations) analysis
supported the diagnostic value of the biomarkers.

diseases have been extensively studied through both liquid
chromatography-mass spectrometry (LC-MS) and nuclear
magnetic resonance (NMR) instruments, supported by
automated data analysis that helps reveal disease markers.
By combining powerful testing systems and information
tools, researchers can better understand endometrial cancer
metabolism and develop better healthcare solutions.” The
integration of powerful analytic tools with XAl methods
helps scientists interpret complex data findings and better
understand their biomarker results. XAl methodologies,
such as SHAP (Shapley Additive Explanations), quantify the
contribution of several metabolites to diagnostic predictions.
This facilitates the connection between data-driven insights
and clinical applicability. XAl methods boost how well we
predict and understand information in SMFs to create more
accurate metabolic biomarker panels. Studies show that
using XAl alongside metabolomics helps doctors understand
disease processes and make better treatment choices.”'?

Although previous research provides a foundation, many gaps
remain. Many metabolomic models function as “black boxes,’
restricting biological understanding, while approaches such
as LightGBM and XGBoost are underexplored with EC data.
The transition from m/z patterns to biological significance is
often neglected. To overcome this, we incorporate XAl from
the start, using SHAP to quantify metabolite contributions
and ensure interpretability. We compare Random Forest,
BaggedCART, AdaBoost, XGBoost, and LightGBM to determine
the most robust model, with the goal of developing not
only a dependable diagnostic tool but also an interpretable
framework that emphasizes critical metabolic indicators and
promotes clinical validation.

MATERIALS AND METHODS
Dataset, Related Factors, and Ethics Approval

This study used open-access metabolomics data® from a
previous case-control study, with 191 EC participants and 204
non-EC participants. A total of 272 metabolites were included
in the analyses. Serum metabolic fingerprints were examined
using particle-enhanced laser desorption/ionization mass
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spectrometry. Advanced techniques, including liquid
chromatography-mass spectrometry and nuclear magnetic
resonance, were evaluated to ensure thorough metabolic
profiling, yielding reliable and reproducible results. Data were
obtained via the National Institutes of Health (NIH) Common
Fund’s Metabolomics Workbench, Project ID PR001898.3 This
study was approved by the inonii University Health Sciences
Non-Interventional Clinical Research Ethics Committee on 03-
12-2024 (approval number: 2024/6840). All procedures were
conducted in accordance with the ethical standards outlined
in the Declaration of Helsinki.

Sample Collection and Preparation

Venipuncture was used to obtain serum samples, which were
centrifuged at 2,000 g for 10 minutes, stored at -80°C, and
exposed to one freeze-thaw cycle prior to SMF analysis to
ensure metabolite stability. The decision was made to conceal
any information on the SMF research from pathologists to
reduce the likelihood of bias. To carry out the procedure, 1.5
microliters of serum diluted tenfold was placed onto a 384
polished steel plate. After the serum dried, it was prepared for
PELDI-MS analysis in accordance with established methods for
mass spectrometry-based metabolomics.>®

Mass Spectrometry Analysis

The mass spectrometry analysis was conducted in positive
ion mode using a Bruker Autoflex Speed TOF/TOF (time-of-
flight/time-of-flight). To achieve accurate detection, reference
metabolites such as alanine, proline, glucose, lactate, and
citrate were used for m/z calibration. The matrix solutions
were prepared by dissolving 10 mg of organic matrices in 1
mL of TA30 (acetonitrile: 0.1% trifluoroacetic acid [TFA], 3:7).
Each sample underwent quality control and was examined at
1000 Hz with 2000 laser shots per run to increase consistency.
Raw spectra were cleaned of noise and peak deviations before
normalization.To maintain consistency, samples were analyzed
in technical replicates with signal intensities calibrated against
internal standards.>'

Statistical Analysis

Quantitative variables were summarized using meanzxstandard
deviation (SD) and 95% confidence intervals. The Shapiro-
Wilk test was applied to assess normality. For data following
a regular distribution, differences between two means were
tested for significance (independent samples test). Three basic
parameters are proposed for effect sizes: low (d<0.5), medium
(0.5<d<0.8), and high (d=0.8).™ False Discovery Rate-adjusted
(FDR-adjusted) p-values are reported. All hypothesis tests
yielded statistically significant results at p<0.05. Statistical
analyses were conducted using SPSS 28.0 (IBM Corp., Armonk,
NY, United States).
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Machine Learning and XAl Methods

The combination of ML and XAl approaches is transforming
diagnostic and therapeutic procedures in healthcare.
Applications of ML algorithms are numerous and include
genetic data for personalized treatment planning, medical
imaging data for early disease detection, and the identification
of risk factors in electronic health records. However, because
these models are so complex, understanding how they make
decisions is a challenging task. XAl approaches provide
reliable explanations to physicians and patients by clarifying
the decision-making processes of ML models. They help
clinicians make decisions by indicating which factors indicate
the presence of disease or determine treatment response in
the analysis of medical data.’

The goal of this work was to create an interpretable EC
prediction model by combining SHAP and machine
learning (ML) methods. Because metabolomic datasets
are high-dimensional and prone to overfitting, the least
absolute shrinkage and selection operator (LASSO) with
L1 regularization was employed for variable selection,
dimensionality reduction, and biomarker identification. We
evaluated ensemble algorithms (AdaBoost, BaggedCART,
LightGBM, Random Forest, and XGBoost) using accuracy, F1
score, receiver operating characteristic (ROC) AUC, sensitivity,
specificity, and Brier score. A holdout validation using 100
iterations (4:1 train-test split) yielded reliable performance
estimates. SHAP analysis evaluated each metabolite’s
contribution, ensuring that the models were both predictive
and interpretable.

Adaptive Boosting (AdaBoost)

The goal of AdaBoost, a classic ensemble learning method, is
to improve prediction accuracy through the use of adaptive
model combinations. An essential premise of AdaBoost is
the repeated training of weak learners, with each assigned a
weight according to its performance. AdaBoost increases the
weights of previously misclassified instances in each iteration,
pushing the algorithm to focus on the most challenging
data points. The final prediction is a weighted average of the
individual weak learners’ outputs, with higher-performing
weak learners exerting greater influence.'>'¢

BaggedCART

Bagging is an ensemble approach that enhances the stability
and accuracy of machine learning systems. In this work, the
bagged CART method involved building several CART models
from distinct subsets of the training data. These subsets were
generated by randomly sampling with replacement from the
original dataset, a procedure known as bootstrapping. Each
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CART model was trained on a bootstrap sample before being
integrated into an ensemble model. The final prediction was
obtained by averaging the predictions of different CART models,
thereby lowering variance and increasing the model’s resilience.!”

Light Gradient Boosting Machine (LightGBM)

LightGBM employs a histogram-based technique, in which
data is separated into histograms during tree construction to
enable more efficient computation of gradient and Hessian
values. This method uses substantially less memory and
speeds up the training process. LightGBM includes special
features such as “Gradient-based One-Side Sampling” and
“Exclusive Feature Bundling” to improve training efficiency
and effectively handle high-dimensional data. LightGBM is a
popular choice for real-time and large-scale machine learning
applications because of its ability to handle large datasets
efficiently while minimizing memory consumption.'®

Random Forest

Random Forest is a set of decision trees created using a
bootstrapped version of the training dataset. Each decision
tree in this approach is built via recursive partitioning, which
involves continuously applying the same node-splitting
procedure, beginning with the root node, until the given
stopping criteria are fulfilled. The predictive power of RF
derives from the aggregation of many weak learners, and
performance improves dramatically when the correlation
between trees in the forest is low. This method seeks to create
a more general and resilient model by reducing the problem
of excessive variation in individual decision trees.’??°

Extreme Gradient Boosting (XGBoost)

Chenand Guestrin created the XGBoostalgorithm,animproved
gradient boosting approach similar to Gradient Boosting (GB)
decision trees and machines. XGBoost generates parallel trees
rapidly and reliably, utilizing a distinct regularized boosting
technique that distinguishes it from traditional Gradient
Boosting. It effectively combines weak learners to improve
group performance by integrating Gradient Boosting with
advanced techniques. Its adaptability and scalability make it a
favored method for enhancing model precision compared to
conventional methods.?'

SHapley Additive exPlanation (SHAP)

SHapley Additive exPlanation developed by Lundberg and Lee,
has become a prominent technique for elucidating ML model
predictions by employing Game Theory methodologies.?
SHAP explains ML predictions by assigning a SHAP value to
each feature, indicating how it contributes to the model’s
output. It quantifies the effect of individual features using SHAP
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values, making it especially helpful for sophisticated black-box
models. This makes SHAP an important tool for evaluating
model behavior and supporting reliable predictions.?

RESULTS

This work emphasizes the uniqueness of discovering and
contextualizing a metabolite panel with high diagnostic
potential for EC. Aside from demonstrating metabolic
reprogramming, it enhances previous research by identifying
critical diagnostic metabolites within an ML framework and
suggesting their functional roles in EC pathophysiology.
The alignment of large effect sizes, high SHAP values, and
physiologically plausible identities for top metabolites such
as m/z=219.125, m/z=672.6961, and m/z=127.0769 highlights
their particular relevance. Comparative statistical findings
between EC and Non-EC groups are shown in Table 1. For
each m/z metabolic value examined, the mean and SD, along
with the 95% confidence interval (Cl), effect size (ES), and
adjusted p-value were also calculated. For most metabolite
variables (m/z) in Table 1, statistically significant differences
exist between EC and Non-EC groups (adjusted p<0.05). In
particular, m/z=109.195, m/z=122.0264, m/z=127.0769, m/
z=154.1687, m/z=156.1351, m/z=169.0587, m/z=192.1574, m/
z=203.1564, m/z=219.125, m/z=232.941, m/z=242.1291, m/
z=272.9065, m/z=285.9427, m/z=304.9443, m/z=370.9469, m/
z=467.3484, m/z=672.6961, m/z=673.7107, m/z=854.0047, m/
7=879.0429, and m/z=908.2128 all showed adjusted p<0.05.
These results indicate that metabolites differ significantly
between EC and Non-EC groups. When the effect sizes related
to metabolites are examined in the table, the values obtained
(ES=1.516 for m/z=219.125, 0.913 for m/z=672.6961, 0.839 for
m/z=203.1564, and 0.808 for m/z=192.1574) demonstrate that
these metabolites strong explanatory power for differences
between the groups. Medium or small ES values are observed
for other metabolite variables (Table 1).

Table 2 shows that there are significant differences in
prediction performance among the algorithms studied.
Overall, LightGBM was the best model, with the highest
accuracy (0.888), F1 score (0.888), ROC AUC (0.955), and Brier
score (0.0881). This demonstrates its strength in distinguishing
between different types of data and calibrating probabilities.
XGBoost was not far behind, with 0.886 accuracy, 0.886 F1
score, 0.951 ROC AUC, and a low Brier score of 0.090. It was
particularly strong in terms of sensitivity (0.892), achieving
the highest value among all models. Random Forest also
achieved competitive results. While it showed balanced yet
slightly less consistent performance compared to gradient
boosting techniques, it still reached accuracy (0.872) and ROC
AUC (0.950) values, along with a Brier score of 0.098. With a
Brier score of 0.214, AdaBoost was clearly less effective in
probability calibration than the other two models (0.885
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Table 1. Quantitative metabolite analysis in endometrial cancer (EC) vs. non-EC groups

Variables Factor ES Status adj. p*
EC Non-EC
Mean=SD 95.0% CI Mean+SD 95.0% CI
m/z=106.0371 3203.7£1172.5 (5400.9, 4723) 2982.1£1159.2 (4919, 4449.4) = = 0.080
m/z=109.195 747.7+415.2 1685.2, 1235.8) 1090.5+555.5 (2367.3, 1803.8) 0.776 Middle <0.001
m/z=122.0264 4242.5+2466.4 10213, 8165.7) 3167+1816.2 (6803, 5692.4) 0.423 Low 0.012
m/z=127.0769 492.9+787.5 1973.2,1017.8 243.2+133.2 (560.5, 403.8) 0.513 Middle <0.001
m/z=134.0109 1118.9£592.8 2597.2,1959.3 1319.9£740.8 (3494.7,2140.1) 0.272 Low 0.011
m/z=135.0956 15467.1+8206.6 (30402.8,26141.7) 17639.5+£16856.3  (45244.1,30609.9) - - 0.975
m/z=154.1687 590.1+542.3 (1966.1, 1168.6) 349.4+222.6 (880.7, 560.9) 0.73 Middle <0.001
m/z=156.1351 324.4+250.8 (981.8,619.8) 213.9£125.5 (518.2,376) 0.534 Middle <0.001
m/z=169.0587 1525.5+£1008.3 (3730.2, 2676.2) 1239+918.2 (3559.4, 1981.2) 0.388 Low <0.001
m/z=184.1607 139.8+88.1 (374, 235.3) 145.9+97 (377.7, 266.5) - - 0.940
m/z=186.0822 253.3+142.2 (654.8,429.6) 258.6£139.5 (556.9, 466.6) - - 0.775
m/z=192.1574 869.8+£810.4 (2477.1,1920.5) 476.6+401.4 (1236.4,810) 0.808 High <0.001
m/z=203.1564 29840.7+£28991.6 (123856.1,59329.1) 12126.7£11039.4 (39883.6, 25394.3) 0.839 High <0.001
m/z=219.125 3229.4+2384.8 (9024.7, 6598.3) 1086.5+840.7 (2874.5,1833.7) 1516 High <0.001
m/z=232.941 279.9+209.8 (895, 652.6) 158.2+84.8 (349.1, 275.3) 0.68 Middle <0.001
m/z=236.1871 81.3+45.5 (168.3,136.4) 71.7+32 (141.9,116.2) = = 0.055
m/z=242.1291 144.8+100.7 (375.6, 259.6) 101.1+£55.9 (234.1,179.4) 0.56 Middle <0.001
m/z=261.942 77.9+344 (160.1, 126.9) 74.5+33.8 (141.4,108) - - 0.372
m/z=272.9065 249.8+126.7 (518.7,435.1) 203.1£103.4 (417.8, 340.6) 0.395 Low <0.001
m/z=285.9427 41.4+17.1 (82.2,63.9) 32.3+12.2 (55.6,49.9) 0.584 Middle <0.001
m/z=304.9443 113+£68.9 (302,210.3) 85.8+43.7 (184.6, 129.6) 0.415 Low <0.001
m/z=317.2478 41£16.1 (78.3, 60.5) 4574243 (89,72.6) - - 0.108
m/z=319.2424 38.8+£15.9 (76.4,61) 39.7£13.9 (68.6, 60) — — 0.456
m/z=325.3013 80.4+£50.8 (198.1, 164.9) 89.5+£51.8 (210.5, 160.5) 0.245 Low 0.023
m/z=327.3211 104.8+84.8 (351.8,214.7) 111.4+67.4 (251.3,205.1) 0.232 Low 0.031
m/z=329.3345 41.3+£22.4 (104.3,76.3) 47.7£24.1 (114.3, 86.2) 0.303 Low <0.001
m/z=333.2464 35.5+14.7 (60.9, 49.9) 35.7+12.8 (69.1, 53.5) - - 0.940
m/z=370.9469 58.9+61 (269.6, 122.9) 42.1£80.9 (125.1, 68.6) 0.549 Middle <0.001
m/z=450.4462 3359.2+2313.3 (8193,7015.8) 3320.2+£2230.2 (9207.1, 6720.6) - - 0.975
m/z=467.3484 87.4+53.8 (245.8, 169.8) 65+36.5 (150.3,125.2) 0.429 Middle <0.001
m/z=672.6961 142+94.1 (367.8,278.1) 258.7£177.5 (768.7,505.2) 0.913 High <0.001
m/z=673.7107 64.2+36.1 (162.6,122.2) 97+57.3 (236, 170.8) 0.732 Middle <0.001
m/z=854.0047 81.7£114.7 (554.8,191.7) 62.2+138.4 (285.7,131.8) 0.441 Low <0.001
m/z=879.0429 938.1+1384.8 (4887.7,2093.4) 547.1£952.4 (2890.8, 1181.2) 0.475 Low <0.001
m/z=908.2128 67.8+87.1 (342.5,168.7) 36.1+£64.3 (100.4, 68.2) 0.646 Middle <0.001

*: Significance test of the difference between two means (independent samples test); EC: Endometrial cancer; SD: Standard deviation; Cl: Confidence interval; ES: Effect size.

507



Yagin and Pinar. Explainable Al in Endometrial Cancer Diagnosis

J Clin Pract Res 2025;47(5):503-511

Table 2. Machine learning model evaluation for gynecologic cancer diagnosis

Model Accuracy F1 score ROC AUC Sensitivity Specificity Brier score
AdaBoost 0.885 0.885 0.943 0.885 0.887 0.214
BaggedCART 0.860 0.861 0.931 0.870 0.850 0.104
LightGBM 0.888 0.888 0.955 0.890 0.886 0.0881
Random Forest 0.872 0.873 0.950 0.881 0.863 0.098
XGBoost 0.886 0.886 0.951 0.892 0.879 0.090

ROC: Receiver operating characteristic; AUC: Area under the curve.

and 0.943). BaggedCART received the lowest scores across
all parameters, including accuracy (0.860), F1 score (0.861),
and ROC AUC (0.931), showing that it was less predictive
than the other ensemble models. In general, XGBoost and
Random Forest were good alternatives, while AdaBoost had
average results. However, LightGBM always outperformed all
other models on important evaluation criteria, making it the
best method for using metabolomic biomarkers to diagnose
gynecologic cancer (Table 2).

The visualization of the average SHAP values is presented
in Figure 1. When the figure is examined, the biomarker m/
z=219.125 is shown to have the greatest effect on the model
output. This indicates that the relevant biomarker has the
strongestinfluence on the model’s predictions.The biomarkers
m/z=672.6961 and m/z=127.0769 were also identified as
factors with significant effects on the model output. Other
biomarkers had comparatively smaller effects (Fig. 1).

SHAP analysis of the XAl model utilizing Metabolomics
Data Repository data is shown in Figure 2. The biomarker
m/z=219.125 had the greatest influence on predictions,
suggesting a diagnostic role, followed by m/z=672.6961 and
m/z=127.0769. In contrast, m/z=106.0371 had little impact.
These findings imply that XAl and metabolomics may help
identify the most important biomarkers for gynecologic
oncology diagnosis (Fig. 2).

DISCUSSION

This study demonstrates substantial differences between EC
and Non-EC metabolic profiles and shows that ML has the
capability to utilize these biomarkers as diagnostic indicators.
The integration of metabolomics data with XAl not only defines
the biological and clinical relevance of important metabolites
but also creates an effective diagnostic system for gynecologic
oncology.This studyidentifies significant metabolic breakdowns
between EC and Non-EC groups, making metabolomics a
promising diagnostic evaluation method in gynecologic
oncology. The discriminatory power of these metabolites was
particularly strong, as they exhibited large ESs with m/z=219.125
(ES=1.516), m/z=672.6961 (ES=0.913), and m/z=203.1564
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Figure 1. Effects of biomarkers on model output with mean
SHAP (SHapley Additive exPlanations) values.

(ES=0.839). The data support existing evidence showing that
cancer is characterized by metabolic reprogramming, involving
lipids, amino acids, and energy production pathways.?*
Elevated m/z=219.125 in EC patients indicates dysregulated
lipid synthesis that supports membrane biogenesis in rapidly
proliferating cells. Disease progression is further associated with
m/z=672.6961 and m/z=203.1564, which are linked to altered
steroid hormone pathways and oxidative stress. While high-ES
metabolites characterize essential EC processes, signals with
moderate or low ES, such as m/z=122.0264 (ES=0.423), are likely
to reflect patient-specific or secondary metabolic alterations.
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Figure 2. Biomarker importance analysis with SHAP
(SHapley Additive exPlanations) values.

These results highlight the complexities of metabolism and the
need to use several analytical methods to understand its role in
EC pathophysiology.”

The analysis demonstrated extensive variation between EC and
Non-EC cohorts in terms of metabolite quantities, especially
for metabolites such as m/z=219.125, m/z=672.6961, and
m/z=127.0769 (Table 1). The strong discriminative power of
metabolites was confirmed by the findings, as they displayed
p<0.001 significance with effect sizes reaching 1.516 (e.g., m/
z=219.125) and higher. Metabolites with large effect sizes appear
to influence EC pathophysiology. The strongest impact was seen
at m/z=219.125, most likely related to lipids or lipid-derived
compounds involved in membrane formation and signaling.
m/z=672.6961 may correspond to nucleotide derivatives or
glycosylated chemicals associated with tumor development and
metastasis. The variability of metabolomic profiles shows that
even minor indicators may improve diagnostic accuracy.?¢-%
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The evaluation of ML models showed that LightGBM
outperformed other programs with an accuracy rate of 0.888
and a ROC AUC score of 0.955 (Table 2). Its combination of
excellent performance and a minimal Brier score (0.0881)
confirms the accuracy of LightGBM for using metabolomics
data to predict EC occurrence. LightGBM demonstrates clinical
suitability for oncology diagnostics thanks toits high sensitivity
(0.890) and high specificity (0.886). Figures 1 and 2 from the
SHAP analysis show that m/z=219.125 and m/z=672.6961,
together with m/z=127.0769, function as the top-contributing
factors for model prediction results. The findings from Table
1 support the biological significance of these metabolites, as
they demonstrated statistical significance in the results. The
metabolite m/z=127.0769 represents amino acid derivatives
associated with tryptophan and kynurenine, which play
essential roles in cancer immune evasion processes. The
alignment between statistical results and features identified
by ML models supports the theory that these metabolites play
a critical role in EC pathogenesis.?®*° The exceptional results
achieved by LightGBM stem from its rapid processing of high-
dimensional sparse datasets, in addition to its overfitting
prevention through leaf-wise tree building and histogram
splitting. Model calibration excellence is indicated by the low
Brier score of 0.0881, which makes the model suitable for
clinical decision-making applications.?’

The SHAP analysis delivered essential information about which
metabolic factors influence model predictions. The metabolite
m/z=219.125 proved to be the most crucial biomarker, with
m/z=672.6961 and m/z=127.0769 ranking closely after it.
This prioritization aligns with each biomarker’s strong effect
significance and statistical measurements, which strengthens
their prospect of becoming diagnostic markers. The SHAP
results also showed that metabolite m/z=106.0371 registered
minimal changes during the prediction process, pointing to
its insignificant diagnostic value for EC. Explaining model
predictions is critical for clinical application, as it converts ML
outputs into actionable information. The consistent finding of
m/z=219.125highlightsits potentialasasignificantECscreening
and treatment biomarker, with previous research associating
values above this range with phospholipids and prostaglandins
involved in inflammation and vascular development. Similarly,
m/z=672.6961 corresponds to glycosphingolipids that are
overexpressed in cancer and may serve as therapeutic targets
or monitoring indicators. Integrating XAl with metabolomics
improves interpretability, guiding doctors toward the most
important metabolites for future investigation. SHAP also
revealed that m/z=106.0371 had minimal influence, despite a
p-value of 0.06, emphasizing the need to combine statistical
and ML approaches for biomarker selection.?2** The detected
metabolites suggest the possibility of developing non-invasive
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screening techniques for EC, minimizing dependence on
biopsies and imaging. In particular, m/z=219.125 has the
potential to be used as a blood marker to monitor therapy
response and reoccurrence. The involvement of lipid and
steroid pathways also indicates treatment options, which are
validated by preclinical models targeting fatty acid synthase
(FASN). Future research should confirm these metabolites in
larger cohorts and define their biological significance using
platforms such as MetaboAnalyst.3*3

Our findings demonstrated varying alignment between
univariate significance (Table 1) and SHAP-based feature
importance. This recurrent mismatch in ML biomarker
investigations highlights the importance of methodological
complementarity: univariate tests detect mean differences,
while ML models account for correlations and non-linear
effects. For example, m/z=203.1564 (ES=0.839) may appear
less relevant in SHAP if paired with other features, whereas m/
z=127.0769 scores highly in SHAP, indicating a key role when
combined with other metabolites. As a result, ML/XAI goes
beyond basic differences to identify feature combinations
with the greatest predictive power, providing a more clinically
relevant biomarker panel than univariate analysis alone.

Several limitations should be noted. First, the sample size
is sufficient for initial analysis but inadequate for broad
generalization. Second, the lack of major confounders,
including Body Mass Index (BMI), age, menopausal status,
and comorbidities, restricts interpretation. Because obesity
has a significant impact on the metabolome, the model may
capture obesity-related signals rather than cancer-specific
ones. Future research should recruit cohorts matched for
these variables or use statistical approaches to isolate EC's
independent influence. Third, the cross-sectional design
makes causal inference impossible; therefore, longitudinal
investigations are required to determine whether metabolic
alterations occur before or after EC development. The model
interpretability enhancement from SHAP analysis also falls
short of resolving data biases and confounding variables,
including age, BMI, and comorbidities, which should be
incorporated into future models.®

CONCLUSION

This research demonstrates how metabolomics can be
combined with ML techniques to enhance detection
strategies for EC. The identification of essential biomarkers
using XAl validation now enables precision oncology
to develop accurate tools that are also interpretable in
practical use. Extending research into biological functions
of the newly discovered metabolites will strengthen the
connection between algorithmic detection and medical
implementation.
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