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Objective: Endometrial cancer (EC) is the most frequent gynecological malignancy in 
women worldwide. This study aims to develop a predictive model integrating machine 
learning (ML) approaches with explainable artificial intelligence (XAI) using metabolomics 
panel data for significant biomarker discovery in EC.
Materials and Methods: This study applied metabolomics and XAI to uncover diagnostic 
biomarkers for EC, the most common gynecologic malignancy. A total of 191 EC cases 
and 204 controls were analyzed using mass spectrometry. ML and XAI techniques were 
incorporated, including SHapley Additive exPlanation, Random Forest, BaggedCART, 
LightGBM, Adaptive Boosting, and Extreme Gradient Boosting.
Results: Statistically significant differences (adjusted p<0.05) were found in 25 metabolites. Effect 
sizes (ES) of m/z=219.125 (ES=1.516), m/z=672.6961 (ES=0.913), and m/z=203.1564 (ES=0.839) 
were notably large, suggesting strong discriminatory ability. These metabolites are involved 
in lipid dysregulation, steroid hormone pathways, and oxidative stress, reflecting cancer-
specific metabolic reprogramming. The ML models, particularly LightGBM, demonstrated high 
accuracy and good calibration. After training with the final feature dataset, SHapley Additive 
exPlanations (SHAP) analysis identified m/z=219.125, m/z=672.6961, and m/z=127.0769 as the 
top contributing features, aligning with their biological impact on EC pathogenesis.
Conclusion: This study suggests non-invasive biomarkers for early detection of EC 
screening, highlighting the heterogeneity of metabolic adaptation in EC and the need for 
multi-omics approaches to understand disease mechanisms. Limitations include diverse 
cohorts and reliance on tandem mass spectrometry. Nonetheless, these findings represent 
a step forward in precision oncology.
Keywords: Biomarker discovery, endometrial cancer, explainable artificial intelligence (AI), 
machine learning, metabolomics.
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ABSTRACT

INTRODUCTION
Endometrial cancer (EC) is the most common gynecologic malignancy in women worldwide, 
with an estimated 417,000 new cases and 97,000 deaths per year.1 The incidence of the disease is 
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increasing, particularly in developed countries, due to rising 
rates of obesity, physical inactivity, and aging populations. 
Approximately 40–50% of EC cases result from obesity, 
through its association with unopposed estrogen levels and 
potentially insulin resistance.2 This trend is concerning, as 
younger patients often present with aggressive EC subtypes 
and poor prognosis. Ultrasound-based distinction is 
challenging; therefore, early and precise diagnosis is critical. 
The CA-125 biomarker has limited diagnostic utility, with an 
area under the curve (AUC) of 0.610–0.684.3 This limitation 
underscores the urgent need for novel diagnostic tools to 
improve sensitivity and specificity. 

Metabolomics investigates tumor metabolic patterns in 
EC using tools such as the National Metabolomics Data 
Repository (NMDR) 2024, revealing increased glucose 
utilization and dysregulation of amino acids and lipids. 
Lipidomics has identified early-warning metabolites, such 
as phosphatidylcholines and sphingomyelins, which may 
indicate endothelial failure before symptoms appear. Studies 
show that EC cancers consume more branched-chain amino 
acids and generate excess glycolytic byproducts, thereby 
altering pathways and enhancing resistance to apoptosis.4,5

Recent investigations have confirmed the promise of 
metabolomics in EC diagnosis. PELDI-MS (ProteinChip®-
based Surface-Enhanced Laser Desorption/Ionization Mass 
Spectrometry) has identified serum metabolic fingerprints 
with an AUC of 0.87–0.93, while other studies have reported 
alterations in glutamine and amino acid metabolism 
associated with prognosis and treatment outcomes. Machine 
learning, namely AutoML-XAI, has expanded these discoveries 
by emphasizing transparent and effective computational 
models.3,6,7 Our study builds directly upon these advancements 
by applying a suite of robust ML models and XAI to an 
independent cohort, aiming to both validate and refine the 
search for the most impactful metabolic biomarkers for EC. This 
biological plausibility is grounded in the well-characterized 
metabolic reprogramming that underpins EC pathogenesis. 
Metabolic disturbances in EC are driven by obesity and 
unopposed estrogen. Estrogen enhances lipid synthesis, while 
insulin resistance associated with obesity alters glucose and 
fatty acid metabolism. Metabolomics may reveal dysfunctions 
in pathways and biomarkers unique to diseases by detecting 
lipogenesis, hormone imbalance, and oxidative stress.8,9

Research demonstrated the ability of serum metabolic 
fingerprints (SMFs), tested with PELDI-MS mass spectrometry, 
to distinguish EC conditions from non-EC conditions.3 More 
recent studies show that understanding how EC patients 
alter sugar and fat metabolism helps doctors develop 
better personalized diagnoses.10 The metabolic pathways of 

diseases have been extensively studied through both liquid 
chromatography-mass spectrometry (LC-MS) and nuclear 
magnetic resonance (NMR) instruments, supported by 
automated data analysis that helps reveal disease markers. 
By combining powerful testing systems and information 
tools, researchers can better understand endometrial cancer 
metabolism and develop better healthcare solutions.11 The 
integration of powerful analytic tools with XAI methods 
helps scientists interpret complex data findings and better 
understand their biomarker results. XAI methodologies, 
such as SHAP (Shapley Additive Explanations), quantify the 
contribution of several metabolites to diagnostic predictions. 
This facilitates the connection between data-driven insights 
and clinical applicability. XAI methods boost how well we 
predict and understand information in SMFs to create more 
accurate metabolic biomarker panels. Studies show that 
using XAI alongside metabolomics helps doctors understand 
disease processes and make better treatment choices.7,12

Although previous research provides a foundation, many gaps 
remain. Many metabolomic models function as “black boxes,” 
restricting biological understanding, while approaches such 
as LightGBM and XGBoost are underexplored with EC data. 
The transition from m/z patterns to biological significance is 
often neglected. To overcome this, we incorporate XAI from 
the start, using SHAP to quantify metabolite contributions 
and ensure interpretability. We compare Random Forest, 
BaggedCART, AdaBoost, XGBoost, and LightGBM to determine 
the most robust model, with the goal of developing not 
only a dependable diagnostic tool but also an interpretable 
framework that emphasizes critical metabolic indicators and 
promotes clinical validation.

MATERIALS AND METHODS
Dataset, Related Factors, and Ethics Approval
This study used open-access metabolomics data3 from a 
previous case-control study, with 191 EC participants and 204 
non-EC participants. A total of 272 metabolites were included 
in the analyses. Serum metabolic fingerprints were examined 
using particle-enhanced laser desorption/ionization mass 

KEY MESSAGES

•	 Robust metabolic biomarkers for endometrial cancer 
diagnosis were identified using a machine learning-
integrated explainable artificial intelligence model.

•	 The LightGBM machine learning model offered 
reliable diagnostic potential.

•	 SHAP (SHapley Additive exPlanations) analysis 
supported the diagnostic value of the biomarkers.
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spectrometry. Advanced techniques, including liquid 
chromatography-mass spectrometry and nuclear magnetic 
resonance, were evaluated to ensure thorough metabolic 
profiling, yielding reliable and reproducible results. Data were 
obtained via the National Institutes of Health (NIH) Common 
Fund’s Metabolomics Workbench, Project ID PR001898.3 This 
study was approved by the İnonü University Health Sciences 
Non-Interventional Clinical Research Ethics Committee on 03-
12-2024 (approval number: 2024/6840). All procedures were 
conducted in accordance with the ethical standards outlined 
in the Declaration of Helsinki.

Sample Collection and Preparation

Venipuncture was used to obtain serum samples, which were 
centrifuged at 2,000 g for 10 minutes, stored at -80°C, and 
exposed to one freeze-thaw cycle prior to SMF analysis to 
ensure metabolite stability. The decision was made to conceal 
any information on the SMF research from pathologists to 
reduce the likelihood of bias. To carry out the procedure, 1.5 
microliters of serum diluted tenfold was placed onto a 384 
polished steel plate. After the serum dried, it was prepared for 
PELDI-MS analysis in accordance with established methods for 
mass spectrometry-based metabolomics.3,5

Mass Spectrometry Analysis

The mass spectrometry analysis was conducted in positive 
ion mode using a Bruker Autoflex Speed TOF/TOF (time-of-
flight/time-of-flight). To achieve accurate detection, reference 
metabolites such as alanine, proline, glucose, lactate, and 
citrate were used for m/z calibration. The matrix solutions 
were prepared by dissolving 10 mg of organic matrices in 1 
mL of TA30 (acetonitrile: 0.1% trifluoroacetic acid [TFA], 3:7). 
Each sample underwent quality control and was examined at 
1000 Hz with 2000 laser shots per run to increase consistency. 
Raw spectra were cleaned of noise and peak deviations before 
normalization. To maintain consistency, samples were analyzed 
in technical replicates with signal intensities calibrated against 
internal standards.3,13

Statistical Analysis

Quantitative variables were summarized using mean±standard 
deviation (SD) and 95% confidence intervals. The Shapiro-
Wilk test was applied to assess normality. For data following 
a regular distribution, differences between two means were 
tested for significance (independent samples test). Three basic 
parameters are proposed for effect sizes: low (d<0.5), medium 
(0.5≤d<0.8), and high (d≥0.8).14 False Discovery Rate-adjusted 
(FDR-adjusted) p-values are reported. All hypothesis tests 
yielded statistically significant results at p<0.05. Statistical 
analyses were conducted using SPSS 28.0 (IBM Corp., Armonk, 
NY, United States).

Machine Learning and XAI Methods

The combination of ML and XAI approaches is transforming 
diagnostic and therapeutic procedures in healthcare. 
Applications of ML algorithms are numerous and include 
genetic data for personalized treatment planning, medical 
imaging data for early disease detection, and the identification 
of risk factors in electronic health records. However, because 
these models are so complex, understanding how they make 
decisions is a challenging task. XAI approaches provide 
reliable explanations to physicians and patients by clarifying 
the decision-making processes of ML models. They help 
clinicians make decisions by indicating which factors indicate 
the presence of disease or determine treatment response in 
the analysis of medical data.15

The goal of this work was to create an interpretable EC 
prediction model by combining SHAP and machine 
learning (ML) methods. Because metabolomic datasets 
are high-dimensional and prone to overfitting, the least 
absolute shrinkage and selection operator (LASSO) with 
L1 regularization was employed for variable selection, 
dimensionality reduction, and biomarker identification. We 
evaluated ensemble algorithms (AdaBoost, BaggedCART, 
LightGBM, Random Forest, and XGBoost) using accuracy, F1 
score, receiver operating characteristic (ROC) AUC, sensitivity, 
specificity, and Brier score. A holdout validation using 100 
iterations (4:1 train-test split) yielded reliable performance 
estimates. SHAP analysis evaluated each metabolite’s 
contribution, ensuring that the models were both predictive 
and interpretable.

Adaptive Boosting (AdaBoost)

The goal of AdaBoost, a classic ensemble learning method, is 
to improve prediction accuracy through the use of adaptive 
model combinations. An essential premise of AdaBoost is 
the repeated training of weak learners, with each assigned a 
weight according to its performance. AdaBoost increases the 
weights of previously misclassified instances in each iteration, 
pushing the algorithm to focus on the most challenging 
data points. The final prediction is a weighted average of the 
individual weak learners’ outputs, with higher-performing 
weak learners exerting greater influence.15,16

BaggedCART

Bagging is an ensemble approach that enhances the stability 
and accuracy of machine learning systems. In this work, the 
bagged CART method involved building several CART models 
from distinct subsets of the training data. These subsets were 
generated by randomly sampling with replacement from the 
original dataset, a procedure known as bootstrapping. Each 
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CART model was trained on a bootstrap sample before being 
integrated into an ensemble model. The final prediction was 
obtained by averaging the predictions of different CART models, 
thereby lowering variance and increasing the model’s resilience.17

Light Gradient Boosting Machine (LightGBM)

LightGBM employs a histogram-based technique, in which 
data is separated into histograms during tree construction to 
enable more efficient computation of gradient and Hessian 
values. This method uses substantially less memory and 
speeds up the training process. LightGBM includes special 
features such as “Gradient-based One-Side Sampling” and 
“Exclusive Feature Bundling” to improve training efficiency 
and effectively handle high-dimensional data. LightGBM is a 
popular choice for real-time and large-scale machine learning 
applications because of its ability to handle large datasets 
efficiently while minimizing memory consumption.18

Random Forest

Random Forest is a set of decision trees created using a 
bootstrapped version of the training dataset. Each decision 
tree in this approach is built via recursive partitioning, which 
involves continuously applying the same node-splitting 
procedure, beginning with the root node, until the given 
stopping criteria are fulfilled. The predictive power of RF 
derives from the aggregation of many weak learners, and 
performance improves dramatically when the correlation 
between trees in the forest is low. This method seeks to create 
a more general and resilient model by reducing the problem 
of excessive variation in individual decision trees.19,20

Extreme Gradient Boosting (XGBoost)

Chen and Guestrin created the XGBoost algorithm, an improved 
gradient boosting approach similar to Gradient Boosting (GB) 
decision trees and machines. XGBoost generates parallel trees 
rapidly and reliably, utilizing a distinct regularized boosting 
technique that distinguishes it from traditional Gradient 
Boosting. It effectively combines weak learners to improve 
group performance by integrating Gradient Boosting with 
advanced techniques. Its adaptability and scalability make it a 
favored method for enhancing model precision compared to 
conventional methods.21

SHapley Additive exPlanation (SHAP)

SHapley Additive exPlanation developed by Lundberg and Lee, 
has become a prominent technique for elucidating ML model 
predictions by employing Game Theory methodologies.22 
SHAP explains ML predictions by assigning a SHAP value to 
each feature, indicating how it contributes to the model’s 
output. It quantifies the effect of individual features using SHAP 

values, making it especially helpful for sophisticated black-box 
models. This makes SHAP an important tool for evaluating 
model behavior and supporting reliable predictions.23

RESULTS
This work emphasizes the uniqueness of discovering and 
contextualizing a metabolite panel with high diagnostic 
potential for EC. Aside from demonstrating metabolic 
reprogramming, it enhances previous research by identifying 
critical diagnostic metabolites within an ML framework and 
suggesting their functional roles in EC pathophysiology. 
The alignment of large effect sizes, high SHAP values, and 
physiologically plausible identities for top metabolites such 
as m/z=219.125, m/z=672.6961, and m/z=127.0769 highlights 
their particular relevance. Comparative statistical findings 
between EC and Non-EC groups are shown in Table 1. For 
each m/z metabolic value examined, the mean and SD, along 
with the 95% confidence interval (CI), effect size (ES), and 
adjusted p-value were also calculated. For most metabolite 
variables (m/z) in Table 1, statistically significant differences 
exist between EC and Non-EC groups (adjusted p<0.05). In 
particular, m/z=109.195, m/z=122.0264, m/z=127.0769, m/
z=154.1687, m/z=156.1351, m/z=169.0587, m/z=192.1574, m/
z=203.1564, m/z=219.125, m/z=232.941, m/z=242.1291, m/
z=272.9065, m/z=285.9427, m/z=304.9443, m/z=370.9469, m/
z=467.3484, m/z=672.6961, m/z=673.7107, m/z=854.0047, m/
z=879.0429, and m/z=908.2128 all showed adjusted p<0.05. 
These results indicate that metabolites differ significantly 
between EC and Non-EC groups. When the effect sizes related 
to metabolites are examined in the table, the values obtained 
(ES=1.516 for m/z=219.125, 0.913 for m/z=672.6961, 0.839 for 
m/z=203.1564, and 0.808 for m/z=192.1574) demonstrate that 
these metabolites strong explanatory power for differences 
between the groups. Medium or small ES values are observed 
for other metabolite variables (Table 1).

Table 2 shows that there are significant differences in 
prediction performance among the algorithms studied. 
Overall, LightGBM was the best model, with the highest 
accuracy (0.888), F1 score (0.888), ROC AUC (0.955), and Brier 
score (0.0881). This demonstrates its strength in distinguishing 
between different types of data and calibrating probabilities. 
XGBoost was not far behind, with 0.886 accuracy, 0.886 F1 
score, 0.951 ROC AUC, and a low Brier score of 0.090. It was 
particularly strong in terms of sensitivity (0.892), achieving 
the highest value among all models. Random Forest also 
achieved competitive results. While it showed balanced yet 
slightly less consistent performance compared to gradient 
boosting techniques, it still reached accuracy (0.872) and ROC 
AUC (0.950) values, along with a Brier score of 0.098. With a 
Brier score of 0.214, AdaBoost was clearly less effective in 
probability calibration than the other two models (0.885 
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Table 1. Quantitative metabolite analysis in endometrial cancer (EC) vs. non-EC groups

Variables Factor ES Status adj. p*

EC Non-EC

Mean±SD 95.0% CI Mean±SD 95.0% CI

m/z=106.0371 3203.7±1172.5 (5400.9, 4723) 2982.1±1159.2 (4919, 4449.4) – – 0.080

m/z=109.195 747.7±415.2 (1685.2, 1235.8) 1090.5±555.5 (2367.3, 1803.8) 0.776 Middle <0.001

m/z=122.0264 4242.5±2466.4 (10213, 8165.7) 3167±1816.2 (6803, 5692.4) 0.423 Low 0.012

m/z=127.0769 492.9±787.5 (1973.2, 1017.8) 243.2±133.2 (560.5, 403.8) 0.513 Middle <0.001

m/z=134.0109 1118.9±592.8 (2597.2, 1959.3) 1319.9±740.8 (3494.7, 2140.1) 0.272 Low 0.011

m/z=135.0956 15467.1±8206.6 (30402.8, 26141.7) 17639.5±16856.3 (45244.1, 30609.9) – – 0.975

m/z=154.1687 590.1±542.3 (1966.1, 1168.6) 349.4±222.6 (880.7, 560.9) 0.73 Middle <0.001

m/z=156.1351 324.4±250.8 (981.8, 619.8) 213.9±125.5 (518.2, 376) 0.534 Middle <0.001

m/z=169.0587 1525.5±1008.3 (3730.2, 2676.2) 1239±918.2 (3559.4, 1981.2) 0.388 Low <0.001

m/z=184.1607 139.8±88.1 (374, 235.3) 145.9±97 (377.7, 266.5) – – 0.940

m/z=186.0822 253.3±142.2 (654.8, 429.6) 258.6±139.5 (556.9, 466.6) – – 0.775

m/z=192.1574 869.8±810.4 (2477.1, 1920.5) 476.6±401.4 (1236.4, 810) 0.808 High <0.001

m/z=203.1564 29840.7±28991.6 (123856.1, 59329.1) 12126.7±11039.4 (39883.6, 25394.3) 0.839 High <0.001

m/z=219.125 3229.4±2384.8 (9024.7, 6598.3) 1086.5±840.7 (2874.5, 1833.7) 1.516 High <0.001

m/z=232.941 279.9±209.8 (895, 652.6) 158.2±84.8 (349.1, 275.3) 0.68 Middle <0.001

m/z=236.1871 81.3±45.5 (168.3, 136.4) 71.7±32 (141.9, 116.2) – – 0.055

m/z=242.1291 144.8±100.7 (375.6, 259.6) 101.1±55.9 (234.1, 179.4) 0.56 Middle <0.001

m/z=261.942 77.9±34.4 (160.1, 126.9) 74.5±33.8 (141.4, 108) – – 0.372

m/z=272.9065 249.8±126.7 (518.7, 435.1) 203.1±103.4 (417.8, 340.6) 0.395 Low <0.001

m/z=285.9427 41.4±17.1 (82.2, 63.9) 32.3±12.2 (55.6, 49.9) 0.584 Middle <0.001

m/z=304.9443 113±68.9 (302, 210.3) 85.8±43.7 (184.6, 129.6) 0.415 Low <0.001

m/z=317.2478 41±16.1 (78.3, 60.5) 45.7±24.3 (89, 72.6) – – 0.108

m/z=319.2424 38.8±15.9 (76.4, 61) 39.7±13.9 (68.6, 60) – – 0.456

m/z=325.3013 80.4±50.8 (198.1, 164.9) 89.5±51.8 (210.5, 160.5) 0.245 Low 0.023

m/z=327.3211 104.8±84.8 (351.8, 214.7) 111.4±67.4 (251.3, 205.1) 0.232 Low 0.031

m/z=329.3345 41.3±22.4 (104.3, 76.3) 47.7±24.1 (114.3, 86.2) 0.303 Low <0.001

m/z=333.2464 35.5±14.7 (60.9, 49.9) 35.7±12.8 (69.1, 53.5) – – 0.940

m/z=370.9469 58.9±61 (269.6, 122.9) 42.1±80.9 (125.1, 68.6) 0.549 Middle <0.001

m/z=450.4462 3359.2±2313.3 (8193, 7015.8) 3320.2±2230.2 (9207.1, 6720.6) – – 0.975

m/z=467.3484 87.4±53.8 (245.8, 169.8) 65±36.5 (150.3, 125.2) 0.429 Middle <0.001

m/z=672.6961 142±94.1 (367.8, 278.1) 258.7±177.5 (768.7, 505.2) 0.913 High <0.001

m/z=673.7107 64.2±36.1 (162.6, 122.2) 97±57.3 (236, 170.8) 0.732 Middle <0.001

m/z=854.0047 81.7±114.7 (554.8, 191.7) 62.2±138.4 (285.7, 131.8) 0.441 Low <0.001

m/z=879.0429 938.1±1384.8 (4887.7, 2093.4) 547.1±952.4 (2890.8, 1181.2) 0.475 Low <0.001

m/z=908.2128 67.8±87.1 (342.5, 168.7) 36.1±64.3 (100.4, 68.2) 0.646 Middle <0.001

*: Significance test of the difference between two means (independent samples test); EC: Endometrial cancer; SD: Standard deviation; CI: Confidence interval; ES: Effect size.
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and 0.943). BaggedCART received the lowest scores across 
all parameters, including accuracy (0.860), F1 score (0.861), 
and ROC AUC (0.931), showing that it was less predictive 
than the other ensemble models. In general, XGBoost and 
Random Forest were good alternatives, while AdaBoost had 
average results. However, LightGBM always outperformed all 
other models on important evaluation criteria, making it the 
best method for using metabolomic biomarkers to diagnose 
gynecologic cancer (Table 2).

The visualization of the average SHAP values is presented 
in Figure 1. When the figure is examined, the biomarker m/
z=219.125 is shown to have the greatest effect on the model 
output. This indicates that the relevant biomarker has the 
strongest influence on the model’s predictions. The biomarkers 
m/z=672.6961 and m/z=127.0769 were also identified as 
factors with significant effects on the model output. Other 
biomarkers had comparatively smaller effects (Fig. 1).

SHAP analysis of the XAI model utilizing Metabolomics 
Data Repository data is shown in Figure 2. The biomarker 
m/z=219.125 had the greatest influence on predictions, 
suggesting a diagnostic role, followed by m/z=672.6961 and 
m/z=127.0769. In contrast, m/z=106.0371 had little impact. 
These findings imply that XAI and metabolomics may help 
identify the most important biomarkers for gynecologic 
oncology diagnosis (Fig. 2).

DISCUSSION
This study demonstrates substantial differences between EC 
and Non-EC metabolic profiles and shows that ML has the 
capability to utilize these biomarkers as diagnostic indicators. 
The integration of metabolomics data with XAI not only defines 
the biological and clinical relevance of important metabolites 
but also creates an effective diagnostic system for gynecologic 
oncology. This study identifies significant metabolic breakdowns 
between EC and Non-EC groups, making metabolomics a 
promising diagnostic evaluation method in gynecologic 
oncology. The discriminatory power of these metabolites was 
particularly strong, as they exhibited large ESs with m/z=219.125 
(ES=1.516), m/z=672.6961 (ES=0.913), and m/z=203.1564 

(ES=0.839). The data support existing evidence showing that 
cancer is characterized by metabolic reprogramming, involving 
lipids, amino acids, and energy production pathways.24 
Elevated m/z=219.125 in EC patients indicates dysregulated 
lipid synthesis that supports membrane biogenesis in rapidly 
proliferating cells. Disease progression is further associated with 
m/z=672.6961 and m/z=203.1564, which are linked to altered 
steroid hormone pathways and oxidative stress. While high-ES 
metabolites characterize essential EC processes, signals with 
moderate or low ES, such as m/z=122.0264 (ES=0.423), are likely 
to reflect patient-specific or secondary metabolic alterations. 

Table 2. Machine learning model evaluation for gynecologic cancer diagnosis

Model Accuracy F1 score ROC AUC Sensitivity Specificity Brier score

AdaBoost 0.885 0.885 0.943 0.885 0.887 0.214

BaggedCART 0.860 0.861 0.931 0.870 0.850 0.104

LightGBM 0.888 0.888 0.955 0.890 0.886 0.0881

Random Forest 0.872 0.873 0.950 0.881 0.863 0.098

XGBoost 0.886 0.886 0.951 0.892 0.879 0.090

ROC: Receiver operating characteristic; AUC: Area under the curve.

Figure 1. Effects of biomarkers on model output with mean 
SHAP (SHapley Additive exPlanations) values.
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These results highlight the complexities of metabolism and the 
need to use several analytical methods to understand its role in 
EC pathophysiology.25

The analysis demonstrated extensive variation between EC and 
Non-EC cohorts in terms of metabolite quantities, especially 
for metabolites such as m/z=219.125, m/z=672.6961, and 
m/z=127.0769 (Table 1). The strong discriminative power of 
metabolites was confirmed by the findings, as they displayed 
p<0.001 significance with effect sizes reaching 1.516 (e.g., m/
z=219.125) and higher. Metabolites with large effect sizes appear 
to influence EC pathophysiology. The strongest impact was seen 
at m/z=219.125, most likely related to lipids or lipid-derived 
compounds involved in membrane formation and signaling. 
m/z=672.6961 may correspond to nucleotide derivatives or 
glycosylated chemicals associated with tumor development and 
metastasis. The variability of metabolomic profiles shows that 
even minor indicators may improve diagnostic accuracy.26–28

The evaluation of ML models showed that LightGBM 
outperformed other programs with an accuracy rate of 0.888 
and a ROC AUC score of 0.955 (Table 2). Its combination of 
excellent performance and a minimal Brier score (0.0881) 
confirms the accuracy of LightGBM for using metabolomics 
data to predict EC occurrence. LightGBM demonstrates clinical 
suitability for oncology diagnostics thanks to its high sensitivity 
(0.890) and high specificity (0.886). Figures 1 and 2 from the 
SHAP analysis show that m/z=219.125 and m/z=672.6961, 
together with m/z=127.0769, function as the top-contributing 
factors for model prediction results. The findings from Table 
1 support the biological significance of these metabolites, as 
they demonstrated statistical significance in the results. The 
metabolite m/z=127.0769 represents amino acid derivatives 
associated with tryptophan and kynurenine, which play 
essential roles in cancer immune evasion processes. The 
alignment between statistical results and features identified 
by ML models supports the theory that these metabolites play 
a critical role in EC pathogenesis.29,30 The exceptional results 
achieved by LightGBM stem from its rapid processing of high-
dimensional sparse datasets, in addition to its overfitting 
prevention through leaf-wise tree building and histogram 
splitting. Model calibration excellence is indicated by the low 
Brier score of 0.0881, which makes the model suitable for 
clinical decision-making applications.31

The SHAP analysis delivered essential information about which 
metabolic factors influence model predictions. The metabolite 
m/z=219.125 proved to be the most crucial biomarker, with 
m/z=672.6961 and m/z=127.0769 ranking closely after it. 
This prioritization aligns with each biomarker’s strong effect 
significance and statistical measurements, which strengthens 
their prospect of becoming diagnostic markers. The SHAP 
results also showed that metabolite m/z=106.0371 registered 
minimal changes during the prediction process, pointing to 
its insignificant diagnostic value for EC. Explaining model 
predictions is critical for clinical application, as it converts ML 
outputs into actionable information. The consistent finding of 
m/z=219.125 highlights its potential as a significant EC screening 
and treatment biomarker, with previous research associating 
values above this range with phospholipids and prostaglandins 
involved in inflammation and vascular development. Similarly, 
m/z=672.6961 corresponds to glycosphingolipids that are 
overexpressed in cancer and may serve as therapeutic targets 
or monitoring indicators. Integrating XAI with metabolomics 
improves interpretability, guiding doctors toward the most 
important metabolites for future investigation. SHAP also 
revealed that m/z=106.0371 had minimal influence, despite a 
p-value of 0.06, emphasizing the need to combine statistical 
and ML approaches for biomarker selection.32,33 The detected 
metabolites suggest the possibility of developing non-invasive 

Figure 2. Biomarker importance analysis with SHAP 
(SHapley Additive exPlanations) values.
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screening techniques for EC, minimizing dependence on 
biopsies and imaging. In particular, m/z=219.125 has the 
potential to be used as a blood marker to monitor therapy 
response and reoccurrence. The involvement of lipid and 
steroid pathways also indicates treatment options, which are 
validated by preclinical models targeting fatty acid synthase 
(FASN). Future research should confirm these metabolites in 
larger cohorts and define their biological significance using 
platforms such as MetaboAnalyst.34,35

Our findings demonstrated varying alignment between 
univariate significance (Table 1) and SHAP-based feature 
importance. This recurrent mismatch in ML biomarker 
investigations highlights the importance of methodological 
complementarity: univariate tests detect mean differences, 
while ML models account for correlations and non-linear 
effects. For example, m/z=203.1564 (ES=0.839) may appear 
less relevant in SHAP if paired with other features, whereas m/
z=127.0769 scores highly in SHAP, indicating a key role when 
combined with other metabolites. As a result, ML/XAI goes 
beyond basic differences to identify feature combinations 
with the greatest predictive power, providing a more clinically 
relevant biomarker panel than univariate analysis alone.

Several limitations should be noted. First, the sample size 
is sufficient for initial analysis but inadequate for broad 
generalization. Second, the lack of major confounders, 
including Body Mass Index (BMI), age, menopausal status, 
and comorbidities, restricts interpretation. Because obesity 
has a significant impact on the metabolome, the model may 
capture obesity-related signals rather than cancer-specific 
ones. Future research should recruit cohorts matched for 
these variables or use statistical approaches to isolate EC’s 
independent influence. Third, the cross-sectional design 
makes causal inference impossible; therefore, longitudinal 
investigations are required to determine whether metabolic 
alterations occur before or after EC development. The model 
interpretability enhancement from SHAP analysis also falls 
short of resolving data biases and confounding variables, 
including age, BMI, and comorbidities, which should be 
incorporated into future models.36

CONCLUSION
This research demonstrates how metabolomics can be 
combined with ML techniques to enhance detection 
strategies for EC. The identification of essential biomarkers 
using XAI validation now enables precision oncology 
to develop accurate tools that are also interpretable in 
practical use. Extending research into biological functions 
of the newly discovered metabolites will strengthen the 
connection between algorithmic detection and medical 
implementation.
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