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Estimation of Genetic Correlation Between Rheumatoid 
Arthritis and Multiple Sclerosis Using Summary 
Statistics from Genome-Wide Association Studies

 Ragıp Onur Öztornacı
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Objective: Genome-wide association studies (GWAS) have revolutionized our understand-
ing of the genetic basis of diseases by examining millions of genetic variants across the 
genome. Rheumatoid arthritis (RA) and multiple sclerosis (MS) are chronic autoimmune dis-
eases characterized by immune system dysregulation and inflammation. Investigating the 
genetic correlation between RA and MS can provide insights into shared genetic factors, 
potential mechanisms, and pathways underlying these complex disorders. The objective of 
this study was to compare different statistical methods to estimate the genetic correlation 
between RA and MS using GWAS summary statistics.
Materials and Methods: To estimate single nucleotide polymorphism (SNP) heritability 
and genetic correlation, we utilized two popular methods: Linkage Disequilibrium Score 
Regression (LDSC) and Linkage Disequilibrium Adjusted Kinship (LDAK) models.
Results: Our analysis revealed a significant, moderate, positive correlation between RA and 
MS using both LDSC and LDAK (LSDCMS-RA=0.448, LDAKMS-RA=0.387, SpearmanMS-RA=0.0262, 
p<0.001). Additionally, there were notable differences in heritability estimates between the 
two methods and the traits. The LDAK model demonstrated higher heritability estimates for 
the RA-MS relationship ( =0.314) compared to the LDSC ( =0.138).
Conclusion: There is a significant positive genetic correlation between RA and MS, indicat-
ing a shared genetic component. Differential heritability estimates from LDAK and LDSC 
highlight the importance of the method. Genetic overlap informs common pathways and 
potential therapeutic targets. These findings contribute to the evidence of a moderately 
positive genetic correlation, emphasizing the need for further research and personalized 
approaches to managing autoimmune diseases.
Keywords: Genetic correlation, linkage disequilibrium score regression (LDSC), linkage dis-
equilibrium adjusted kinship (LDAK), genome-wide association studies summary statistics, 
snp heritability.
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ABSTRACT

INTRODUCTION
Genome-wide association studies (GWAS) are a common and effective method for exploring the 
genetic architecture of diseases. GWAS rely on the differences in the frequencies of millions of 
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genetic variants between patients and healthy controls. Sum-
mary statistics from GWAS, which provide estimates of the ef-
fect of each variant on risk, are now available for many differ-
ent traits, often based on large sample sizes. An active area of 
current research is the statistical methodology for using sum-
mary GWAS data to extend our knowledge beyond the simple 
discovery of individual genetic variants. For example, summa-
ry statistics can be used to estimate heritability, and those 
from one trait can illuminate the genetic etiology of another 
trait by estimating the genetic correlation between them.1 
Autoimmune diseases are characterized by an aberrant im-
munological response in which the immune system mistak-
enly attacks the body’s own cells and tissues. Normally, the 
immune system’s function is to identify and eliminate harmful 
foreign entities such as bacteria and viruses. However, in au-
toimmune diseases, the immune system fails to distinguish 
between the body’s own healthy cells and foreign invaders, 
leading to an immune reaction against self-antigens.2 Multi-
ple sclerosis (MS) and rheumatoid arthritis (RA) are chronic 
autoimmune conditions. However, they differ in terms of the 
organs affected and the specific mechanisms involved. In MS, 
the immune system targets and damages myelin, the protec-
tive layer surrounding nerve fibers in the central nervous sys-
tem, which includes the brain and spinal cord. This leads to a 
disruption of nerve communication and a variety of neuro-
logical symptoms, such as fatigue, muscle weakness, balance 
and sensory disturbances, and coordination problems.2 RA, 
conversely, primarily impacts the joints, resulting in inflam-
mation, pain, and stiffness. The immune system’s attack on 
the synovium, the tissue lining the joints, leads to joint dam-
age and deformity over time. RA commonly affects the hands, 
wrists, feet, and knees but can also involve other organs and 
systems, causing systemic symptoms like fatigue, fever, and 
weight loss. While MS and RA have different target organs 
and manifestations, they share some similarities. Both diseas-
es are driven by dysregulation of the immune system, with 
both genetic and environmental factors believed to play roles 
in their onset. Additionally, both conditions are chronic and 
require long-term management to control symptoms, slow 
disease progression, and preserve quality of life. Genetically, 
autoimmune diseases often exhibit associations with human 
leukocyte antigen (HLA) genes.3 For instance, in RA, suscep-
tibility to polymyalgia rheumatica is linked to HLA-DRB104 
and DRB101 alleles. In MS, Human Leukocyte Antigen - DR 
Alpha chain (HLA-DRA), Interleukin 2 Receptor Alpha (IL2RA), 
High Mobility Group Box 1 (HMGB1), and Human Leukocyte 
Antigen - DQ Alpha 1 chain (HLA-DQA1) have been identified 
as significant factors.4,5 These findings underscore the role of 
HLA genes in autoimmune disease susceptibility and provide 
insights into specific alleles associated with RA and MS. In our 
study, we utilized the GWAS catalog to obtain summary sta-

tistics for investigating the genetic correlation between RA 
and MS. The GWAS catalog serves as a valuable resource that 
provides comprehensive information on genetic associations 
across various traits and diseases.6

MATERIALS AND METHODS
SNP Heritability
Single nucleotide polymorphisms (SNPs) can account for a 
portion of the phenotypic variance in various traits, and this 
proportion is referred to as SNP heritability. Estimating SNP 
heritability often involves variance component models fit-
ted using restricted maximum likelihood (REML).7 However, 
this approach may not be suitable for large biobanks such 
as the UK Biobank, which include a substantial number of 
individuals.8 To address this issue, alternative methods and 
models have been developed to estimate SNP heritabili-
ty. Commonly used approaches include Linkage Disequi-
librium Score Regression (LDSC), Linkage Disequilibrium 
Adjusted Kinship (LDAK) models, and Genome-Wide Com-
plex Trait Analysis (GCTA) models. LDSC and LDAK utilize 
summary statistics from genome-wide association stud-
ies (GWAS), which typically provide information such as rs 
numbers, alleles, sample sizes, and signed summary sta-
tistics (e.g., Z-scores) for LDSC or directionality (indicating 
a positive or negative effect) for LDAK. These approaches 
consider linkage disequilibrium (LD) patterns, which play 
a crucial role in understanding the genetic architecture of 
complex diseases. The LD patterns surrounding markers 
can affect the results, power, and complexity of GWAS stud-
ies, as they influence the association between diseases and 
alleles.9,10 LD scores, derived from LD patterns, are utilized 
not only in calculating SNP heritability but also in comput-
ing Polygenic Risk Scores (PRS)11,12 and estimating genetic 
correlations. It is worth noting that these methods rely on 
LD scores as a function of linkage disequilibrium to calcu-
late SNP heritability. LD scores provide valuable insights 
into the genetic architecture of traits and diseases, allow-
ing researchers to quantify the contribution of genetic fac-
tors and explore genetic correlations.

Genetic Correlation
Genetic correlation is an estimation of the quantitative rela-
tionship between two different traits based on genetic sim-
ilarity, which is affected by the same gene. This estimation 
can also reveal the contribution of the traits to biological 
causality.13–15 The formula for calculating genetic correlation 
is as follows:

 (1)

where ∂g is the genetic covariance, and h1, h2 are the heritabil-
ity estimates for the respective traits.16
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Genome-Wide Complex Trait Analysis (GCTA) Model
GCTA software can be used for several different purposes, such 
as data management, detecting genetic associations with 
SNPs, estimating LD structure, and simulating GWAS. GCTA 
uses the following equations to estimate total heritability:

 
(2)

where β=1–(c+1/N)/var(Ajk), c+1/N is the prediction error, β is a 
vector of fixed effects such as sex, age, and/or one or more ei-
genvectors from principal component analysis (PCA), and A is 
interpreted as the genetic relationship matrix (GRM) between 
individuals j and k. The GCTA model accounts for minor allele 
frequency (MAF) and extends the methodology to all chromo-
somes to estimate variance, allowing all SNPs to be used for vari-
ance estimation. This method requires individual-level PLINK 
files, meaning GCTA cannot be used with summary statistics.17

Linkage Disequilibrium Score Regression (LDSC) 
Linkage Disequilibrium Score Regression (LD score regression) 
is a reliable method based on GWAS summary statistics. LD 
score regression can describe separate polygenic effects and 
the contributions of confounding factors, such as population 
stratification, and can calculate correlations between different 
phenotypes.18,19 LDSC requires summary statistics from large 
datasets, many of which are publicly available. LDhub is a useful 
database that includes many traits and provides an interface for 
using LDSC to calculate heritability and genetic correlation.19

LDSC uses the following equation (3) for genetic correlation 
between traits 1 and 2, with the expected value of z1j z2j-statis-
tics for SNP j given by:

 (3)

where Ni is the sample size for study i, ∂g is the genetic covari-
ance, lj is the LD score of variant j, Ns is the number of individ-
uals included in both studies, ∂ is the phenotypic correlation 
among Ns overlapping samples, and M is the number of vari-
ants.20 The phenotypic correlation, which occurs due to sam-
pling overlap, is a reason for false correlation inflation. 

The LD Score for variant j can be defined as:

 (4)

where the sum is taken over all other SNPs k. In practice, there 
is very little LD in human samples outside of a small window, 
so LD Scores are typically estimated using a 1 centiMorgan 
(cM) window. In the cases we consider, we will not need to cal-
culate the intercept term , because the GWAS summary 
statistics we use do not come from overlapping samples.21

Linkage Disequilibrium Adjusted Kinship (LDAK) Model
The LDAK model was developed to address the concept of LD, 
which posits that heritability is overestimated in regions of 
high LD and underestimated in regions of low LD. According 
to this concept, SNPs are weighted in relation to local LD, re-
sulting in an LD-adjusted kinship matrix. Since LD patterns are 
strongly correlated with the MAF, it follows that heritability ad-
justments need to be made, with these adjustments depend-
ing on both LD and MAF. In other words, SNPs are weighted 
according to LD patterns and MAF.22 LDAK uses the following 
formulation to calculate SNP heritability:

 (5)

where E  represents the expected heritability contribution of 
SNP j, fj is its observed MAF, and α is the parameter that determines 
the assumed relationship between heritability and MAF. General 
approaches do not account for MAF when calculating heritabil-
ity, which is achieved by setting α=-1; however, LDAK considers 
alternatives. SNP weights (wj) are computed based on LD levels, 
and rj  [0,1] is a score reflecting the certainty of genotype infor-
mation. In the LDAK model, this score inversely relates the quality 
of an SNP to its contributions.23 To highlight the main differences 
between LDAK and LDSC, we can consider the following factor:

 (6)

In LDAK, E  α qj meaning that the user can specify qj arbi-
trarily, where fj represents the MAF of SNP j and wj is a weight 
based on local levels of LD. When estimating heritability with 
LDSC, qj=1, meaning that all SNPs contribute equally.24

Two popular methods for estimating SNP heritability and ge-
netic correlation using GWAS summary statistics are the LDSC 
and LDAK models. We applied these models to estimate ge-
netic correlation and SNP heritability.

Datasets
The National Human Genome Research Institute (NHGRI) - Eu-
ropean Bioinformatics Institute (EBI) GWAS Catalog, a data-
base of genome-wide association studies, has been providing 
data from published studies since 2008. In 2015, the catalog 
underwent a redesign and transitioned to the European Mo-
lecular Biology Laboratory (EMBL) - European Bioinformat-
ics Institute (EBI). The updated infrastructure includes a new 
user interface accessible at www.ebi.ac.uk/gwas/, improved 
search capabilities supported by ontology, and an enhanced 
curation interface.5 Okada et al.25 conducted a meta-analysis 
in 2014 to detect susceptibility SNPs for RA, based on data 
from >100,000 subjects of European and Asian ancestries, in-
cluding 29,880 RA cases and 73,758 controls. Additionally, the 
European RA GWAS meta-analysis included 14,361 RA cases 
and 43,923 controls. We used a large GWAS summary statistics 
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dataset from the GWAS catalog for MS, comprising 9,772 cases 
and 17,376 controls, with a total of 472,086 SNPs.26 The Type II 
Diabetes (T2D) dataset included data on obesity (29,925 cas-
es) and type 2 diabetes (4,040 cases) among 120,286 individu-
als of British ancestry, obtained from the UK Biobank.27

RESULTS
We converted GWAS summary statistics, which include Z 
Score, A1, A2, N, and P-values, into a text file for use with LDSC. 
Our analyses were conducted in Linux environments for both 
methods, as the LDhub online methods did not allow the con-
figuration we required, specifically, the omission of an inter-
cept term. We had to use the no-intercept term because there 
is no sample overlap between MS and RA. LDSC uses the Hap-
Map3 SNP allele list when calculating LD scores27 and can ex-
clude major histocompatibility complex (MHC) regions to pro-
vide an accurate genetic correlation estimate. Additionally, we 
used summary statistics suitable for the LDAK model. When 
using the LDAK model, MHC was removed manually for all 
traits to avoid multicollinearity when calculating tagging files. 
We also applied the traditional Spearman Correlation meth-
od to estimate the correlation between Z-scores using data 
merged based on minor alleles.28 SNPs with identical reference 
alleles for each trait were merged. The MHC region plays an 
important role in autoimmune diseases, being the strongest 
genetic risk factor for both RA and MS. To prevent biased heri-
tability estimation, SNPs within the MHC, a region of extremely 
high LD, were excluded in LDSC as well as in each analysis. The 
exclusion of this region may have contributed to the low mean 
chi-squared values of the test statistics. LDSC is sensitive to the 
following criteria when calculating genetic correlation:

• Heritability (H2) Z score is at least >1.5 (ideally >4).
• The mean Chi-square of the test statistics >1.02.
• The intercept estimated from the SNP heritability analysis is 
between 0.9 and 1.1.

When utilizing LDSC in a Linux environment, we were un-
able to calculate a genetic correlation between MS and RA 
due to differences in sample sizes. Consequently, the LD-
Hub online method also failed to yield any results. Howev-
er, we successfully calculated heritability and genetic cor-
relation for all other traits. We also used LDAK to estimate 
the correlation between MS and RA. LDAK incorporates 
several analysis methods, one of which is SumHer, used 
for calculating genetic correlations based on GWAS sum-
mary statistics.23,24 Both approaches revealed a moderately 
positive correlation between MS and RA (LDSCMS-RA=0.448, 
LDAKMS-RA=0.387, SpearmanMS-RA=0.0262, p<0.001). The her-
itability results demonstrated considerable differences be-
tween the two models and the traits analyzed. The highest 
heritability was observed for the RA-MS comparison using 
the LDAK model ( =0.314), followed by the RA-MS 
comparison using the LDSC model ( =0.138). When 
comparing the two methods, LDAK generally produced 
higher heritability results than LDSC. Our subsequent 
analyses, employing both LDSC and LDAK methods, found 
no statistically significant correlation between RA and 
Type 2 Diabetes (T2D) (LDSCRA-T2D=0.006, LDAKRA-T2D=0.002, 
SpearmanRA-T2D=0.0002, p=0.466) or between MS and Type 
2 Diabetes (LDSCMS-T2D=0.018, LDAKMS-T2D=0.010, Spear-
manMS-T2D=0.0006, p=0.678) (Table 1).

DISCUSSION
In this study, our objective was to explore the genetic cor-
relation between two diseases, MS and RA. We observed 
that the LDAK method tends to estimate higher heritability 
compared to the LDSC, which aligns with existing literature 
(Table 1).23 The sample size played a significant role in calcu-
lating the genetic correlation, with LDSC being more affected 
than the LDAK model in our study. The LDAK model, incor-
porating linkage disequilibrium (LD)-weighted SNP contribu-

Table 1. Results of genetic correlation and heritability

 Description   SumHer (LDAK)  LDSC  Spe Cor

Traits Number Sample Heritability Correlation CoHer Heritability Correlation Z value Spe Coe 
 of SNPs size (N) (SD) (SD) (SD) (SD) (SD)

RA 8,747,962 58,000 
0.314 (0.026) 0.387 (0.116) 0.081 (0.024) 0.138 (0.021) 0.448 (0.169) 2.646

 0.0262 

MS 472,086 26,621       p<0.001

RA 8,747,962 58,000 
0.015 (0. 055) 0.002 (0.064) 0.061 (0.007) 0.014 (0.027) 0.006 (0.003) 0.083

 0.0002

T2D 8,403,414 115,000       p=0.466

MS 472,086 26,621 
0.022 (0.060) 0.010 (0.054) 0.018 (0.062) 0.0127 (0.148) 0.018 (0.339) 0.462

 0.0006

T2D 8,403,414 115,000       p=0.678

CoHer: Coheritability; SD: Standard deviation; Spe Cor: Spearman correlation; Spe Coe: Spearman coefficient; SNPs: Single nucleotide polymorphisms; LDAK: Linkage 

disequilibrium adjusted kinship; LDSC: Linkage disequilibrium score regression.
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tions, yielded higher estimates than the LDSC model, which 
might be advantageous for heritability estimation. However, 
it is crucial to consider potential biases when calculating the 
genetic correlations.28 Our findings demonstrate that LDAK 
heritability estimates were higher than those of LDSC, while 
the genetic correlation results did not exhibit substantial dif-
ferences between the two models. It is important to note that 
estimating genetic correlation using GWAS summary statis-
tics may not provide complete accuracy due to various fac-
tors, such as different populations, distinct LD patterns, and 
genotype-environment interactions.29 Our study revealed a 
significant positive correlation using both the LDAK and LDSC 
methods. Although the MS study may have had limitations 
regarding the number of SNPs included, which could affect 
LDSC, both LDAK and LDSC methods yielded consistent re-
sults, indicating a moderately positive genetic correlation be-
tween RA and MS. Additionally, the classical approach, such as 
the Spearman correlation, was deemed unsuitable for calcu-
lating genetic correlation.19,29 Incorporating Type 2 Diabetes 
into our study has broadened the scope of our investigation 
by introducing an unrelated condition with a distinct etiolo-
gy from autoimmunity. Upon careful analysis of the data, it 
was not consistently observed that Type 2 Diabetes exhibit-
ed a significant correlation with either Multiple Sclerosis (MS) 
or Rheumatoid Arthritis (RA) using both the LDAK and LDSC 
methods. Consequently, it is plausible to consider that the 
observed genetic correlation between RA and MS may stem 
from their shared autoimmune basis.

CONCLUSION
In this study, we found a strong positive genetic correlation 
between RA and MS, which are both autoimmune diseas-
es. It is important to note that MHC regions were exclud-
ed from all traits and methods. Investigating the similari-
ties and differences between RA and MS may help identify 
similarities or differences in treatment approaches. Some 
medications used to treat RA, such as certain disease-mod-
ifying antirheumatic drugs (DMARDs),30 may also offer po-
tential benefits or risks when considered in the context of 
MS, and vice versa. By studying both diseases together, re-
searchers can gain insights into potential cross-utilization 
or shared therapeutic strategies. Understanding the rela-
tionship between RA and MS can help improve diagnostic 
criteria, enable earlier identification of comorbidities, and 
guide appropriate treatment decisions for individuals with 
overlapping symptoms. In cases where there is suspicion 
of correlation between genetic diseases, the use of Spear-
man’s correlation coefficient can lead to misleading results. 
Therefore, when examining correlations within genetic 
data, it is advisable to use statistical methods such as LDAK 
and LDSC that take into account genetic patterns.
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