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Mesenchymal Stem Cell Therapy for Severe Sepsis 
and Septic Shock

Sepsis is a serious and life-threatening clinical syndrome resulting in tissue perfusion disorder and can lead to 
organ dysfunction, shock, and even death. Although the rate of mortality is still high (30%–70%), it is associated 
with half of all in-hospital deaths. It is also one of the high cost diseases worldwide. 

The host immune response to the infection is critical. Although early-phase sepsis is characterized by a hyper-
inflammatory immune response, the later phase of sepsis is often complicated by suppression (1, 2). Continuous 
developments have been achieved in understanding the pathogenesis, and the treatment of sepsis has also clearly 
improved in the last four decades; however, no specific sepsis therapy exists. Currently, principles of sepsis man-
agement are based on the following points: early diagnosis and prompt initiation of sepsis management, severity 
of sepsis, etiologic diagnosis, effective antimicrobial therapy, source control, maintain tissue perfusion/oxygena-
tion and preserve organ function, and prevent complications during/following the episode of severe sepsis. Sepsis 
is a medical emergency and therefore, when sepsis is suspected, antimicrobial treatment should be initiated within 
the first one hour. Antibiotic resistance is also a growing problem worldwide. A limited number of antibiotics such 
as colistin and carbapenem are useful in treating resistant bacterial infections. Moreover, it seems that there will 
be no new antibiotics in the near future for clinical use (2–4).

Although there are no therapies directing to modify the pathophysiology and injury mechanisms of sepsis, sup-
portive management remains crucial. Studies over the last four decades have been focused on suppressing the 
early proinflammatory response to sepsis. To date, more than 40 unsuccessful clinical trials have been reported for 
agents that reduce pathogen recognition and/or block proinflammatory cytokines and/or inflammation-signaling 
pathways in sepsis (3, 4).

Recently, murine models of sepsis have increasingly been used because of their lower cost, shorter generation 
time, ease of housing and care, easier application methods, and the presence of transgenic species (5). The exper-
imental murine models of sepsis are broadly divided into three categories: host barrier disruption models (including 
cecal ligation and incision, cecal ligation and puncture, and colon ascendant stent peritonitis), exogenous admin-
istration of a viable pathogen (Escherichia coli, Staphylococcus aureus, etc.) and administration of a bacterial toxin 
(LPS, lipoteichoic acid, peptidoglycan, zymosan, etc.). Especially in recent years, extensive use of broad-spectrum 
antibiotics has resulted in the emergence of multiple drug resistant nosocomial agents, and this has made the treat-
ment of infections difficult (6). Moreover, in the absence of a new antibiotic, alternative treatment options have 
emerged. Therefore, the use of mono or combined therapy including available antibiotics or cellular therapy for 
the treatment of sepsis has been brought to the agenda (6). In addition, stem cells may be an emerging candidate 
for treatment of sepsis and can be considered as an alternative therapeutic approach. 

Mesenchymal stem or stromal cells (MSCs) are adult cell population with self-renewal ability and are multipotent 
(7). They express cluster of differentiation (CD) 73, CD90, and CD105 surface markers while lacking CD34 and 
CD45, which are related to hematopoietic cell expression (7). Bone-marrow, umbilical Wharton jelly tissue, dental 
tissues, adipose or fat tissue, skin/foreskin, and several tissues may be sources of MSCs (8–13). MSCs have im-
munoregulation and tissue-repair roles beside their antimicrobial capacities (9–15). Mei et al. reported the direct 
bactericidal activity of MSCs is due to increased bacterial phagocytosis by macrophages (9). MSCs can produce 
antibacterial agents such as prostaglandin E2 (10) and LL-37 peptide (11). Efficacy of MSCs against gram-negative 
and -positive organisms related to bacterial pneumonia (12) and its antiviral effect in (13) preclinical models have 
been reported. The immune-modulatory factors including interleukin-10 (IL-10), IL-1, IL-6, leukocyte inhibitory 
factor (Lif), prostaglandin E2, and hepatocyte growth factors which are secreted by MSCs may limit immune 
responses. Moreover, MSCs are involved in the maturation of immune cell populations that results in increased 
number of regulatory T cells, anti-inflammatory T helper II cells, second subgroup of dendritic cells (DC) and an-
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ti-inflammatory M2 macrophages, whereas number of proinflam-
matory T helper I cells, first subgroup of DCs, natural killer cells 
decreases; moreover, MSCs reduce IgG production from B cells 
(14). MSCs may enhance tissue repair and restoration after sepsis 
and restore endothelial barrier function, which is mediated, partly, 
by secretion of factors that enhance resolution of tissue injury (15).

The immunosuppression and immunomodulation properties of 
MSCs are desirable and have been evaluated in a wide spectrum of 
clinical studies. MSC therapy offers a promising treatment option 
for several conditions including autoimmune diseases, heart dis-
eases, and transplant surgeries over the past 25 years. The results 
of these cell application procedures have exhibited an excellent 
safety profile (14). Recently, over 1043 clinical trials involving 
MSCs have been planned for different indications and were reg-
istered in clinicaltrials.gov, these clinical trials enrolled 47,548 pa-
tients (14); however, of these only six clinical trials were assessed 
the effect of MSCs on sepsis or septic shock (2).

Preclinical studies have demonstrated the potential of MSCs for 
sepsis therapy (9–13). The MSCs’ mechanisms of actions have 
been increasingly well characterized in vitro and in preclinical stud-
ies that include modulation of the immune cell response, reduction 
of host injury from the proinflammatory response while augment-
ing bacterial clearance by indirect and direct mechanisms of action, 
and enhanced resolution of inflammation and enhanced tissue re-
pair after injury (14). Although there have been limited clinical tri-
als, initial reports are encouraging. However, considerable barriers 
relating to sepsis and MSCs as a treatment exists that significantly 
impede the clinical translation of MSCs for treatment of patients 
with sepsis, which needs to be overcome if the therapeutic poten-
tial of MSCs is to be realized.
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