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HUMAN SKIN IS AS AN EXTRA-PULMONARY SITE OF SECRETION OF
SURFACTANT PROTEINS

Ýnsan derisi: bir ekstra pulmoner sürfaktan salýným bölgesi

Orhan Kankavi1

Abstract
Surfactant is a surface active material composed of both

lipids and proteins which is produced by alveolar type II

pneumocytes in the lung. Surfactant enhances pathogen

clearence and regulates adaptive and innate immune-cell

functions. Recently, the presence of surfactant proteins in

human skin, being found in variable amounts in epidermis,

dermis, hair follicles, sweat and sebum was reported. These

surfactant proteins show characteristics that may be critical

to local barrier and defence functions of the skin. Review

data demonstrates that human skin expresses surfactant

proteins constitutively in skin tissue. This editorial describes

the surfactant proteins and their possible function within

the skin

Key Words: Skin; Surface - Acitve Agents.

Ö z e t
Surfaktant yüzey aktif materyal olup lipit ve proteinlerden

oluþur ve akciðerlerde alveolar tip II pnömositler tarafýndan

üretilir. Surfaktant, patojenlerin arýndýrýlmasý ile adaptif ve

immün hücre fonksiyonlarýnýn düzenlenmesini artýrýr.

Surfaktant proteinlerinin, insan deri dokusunda  ve farklý

oranlarda, epidermis, dermis, kýl folikülleri, ter ve sebumda

bulunduðu yakýn zamanda gösterilmiþtir. Derinin bölgesel

bariyer ve savunma mekanizmasýnda surfaktant proteinlerinin

kritik moleküller olduðu  gösterilmiþtir. Derlemede sunulan

veriler insan deri dokusunun surfaktant proteinlerinin,

derinin bir bileþeni olarak salgýlandýðýný göstermektedir.

Bu derleme, surfaktant proteinlerinin derideki olasý

fonksiyonlarýný tanýmlamaktadýr.

Anahtar kelimeler: Deri; Yüzey aktif maddeler.

Introduction

Surfactant is a surface active substance which is
synthesized by alveolar epithelial type II cells of lungs.
Surfactant is composed of 80 % phospholipids, 10 %
proteins and 10 % neutral lipids. At present four
surfactant proteins have been identified and
characterized in the lung, surfactant protein-A (SP-
A) (1), surfactant protein-B (SP-B) (2) , surfactant
protein-C (SP-C) (3) and surfactant protein D (SP-D)
(4).  SP-A, SP-D and other collectins have C-type
(calcium dependent) lectin activity. Collectins have
collagen like amino (N) terminal regions and C-type
carbohydrate recognition domains (CRDs). SP-A is
the major surfactant protein. It is a hydrophilic
glycoprotein with a molecular mass of  28-36 kDa

and isoelectric points ranging from 4.8 to 5.2 (5) .
SP-D  (43 kDa reduced) consists of at least four distinct
structural domains: a short, N terminus domain, a
relatively long collagenous domain, a short thyroxine
amphipathic peptide or coiled-coil neck domain,
trimeric subunits (3x43 kDa) which associate at their
N-terminus (6). Collectins bind Gram-positive and
Gram-negative bacteria, viruses, fungi and allergens
(7,8,9). Also, SP-A and SP-D play a major role within
the immune system, participating in the initiation of
and having further roles in non-antibody-mediated
immune responses. Many studies have indicated that
SP-A and SP-D can bind or agglutinate various bacteria
and viruses usually through their CRD (Carbohydrate
Recognition Domain)(10) . Basically, SP-A and SP-
D enhance the affinity of pathogens to phagocytic
cells, which results in elimination and later clearance
of the pathogen.1The University of Akdeniz, Faculty of Veterinary Medicine,

Department of Biochemistry, 15100, Burdur, TURKEY.
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Protein-carbohydrate interactions play an important
role in two phases of the immune response, namely
pathogen recognition and those cellular interactions
that lead to pathogen neutralization. SP-A and SP-D
are now considered to be "host defense molecules"
exerting this effect within the lung by binding foreign
bodies through their CRD regions ) (11,12).

SP-B is a small (Mr: 8.7 kDa) lipid-associated
hydrophobic protein presents in mammalian lung
surfactant (amino acid residues 1-79) (13). SP-C is a
lipoprotein, consisting of 35 amino acids with alfa-
helical domains between the residues 9-14 (14). SP-
B and SP-C are small hydrophobic and promote very
rapid adsorption of lipids to the air liquid interface
(15). SP-B and SP-C are derived from the proteolytic
processing of much larger primary translation products
encoded on human chromosomes 2 and 8 respectively
(16,17). Both SP-B and SP-C significantly increase
the ability of surfactant phospholipids to adsorb to the
air-liquid interface and facilitate the formation of
surfactant monolayer by accelerating the spreading
of phospholipids and stabilizing the pulmonary alveoli
(18).

Tissue distribution of SP-A and SP-D
Surfactant proteins are predominantly localized in the
lungs. However, there is growing evidence that the
presence of both SP-A and SP-D are not restricted to
the lungs. The localization of the surfactant protein
particularly in mucosal tissue and their presumed roles
in controlling immune responses lead to their
recognition as mucosal-associated collectins. Sites of
extrapulmonary expression have also been descried
in small mammals. Expression of the SP-A protein
and its mRNA has been demonstrated in the rat small
and large intestines (19) and intestinal lumen (20).
Chailey-Heu et al. (21) reported the expression of
both SP-A and SP-D in mesenteric cells. Motwani et
al. (22) demonstrated the presence of SP-D gene
product in the lung, heart, stomach, and kidney of rats
by Northern blot and RT-PCR. Also, Fisher and Mason
(23) demonstrated the location of both mRNA and
SP-D protein in mucus �secreting cells in the gastric
mucosa of rats, although not in the duodenum.
Expression of SP-A and SP-D in porcine Eustachian
tube has been detected (24). RT-PCR and Northern
hybridisation of both SP-A and SP-D cDNA sequences
showed 100 % homology between these proteins in
lung and Eustachian tube. Madsen et al. (25) showed
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the tissue expression of SP-D in
 
the lung and the

kidney, brain, testis, pancreas, salivary gland, heart,
prostate and small intestine as well as the placenta
which also produced clear

 
signals. Fisher and Mason

(23) reported the SP-D message in RNA extracted
from skin blood vessel in rats. Therefore, both SP-A
and SP-D molecules can be considered to play a
general role in primary host defence, in addition to
their surface-tension lowering properties. SP-A, SP-
B and SP-D have now been found to be widely
distributed in a variety of no-pulmonary tissues
including human skin (26). Kankavi and Roberts (27)
showed that SP-A and SP-D are present in synovial
fluid of normal horses. Another study of Kankavi (28)
reported that human Eustachian tube expresses
significant amount of SP-A, SP-B, SP-D and human
organ of Corti SP-B and kidney SP-A and SP-D.
Recent studies of Leth-Larsen et al. (29) have provided
that SP-D is expressed in the female genital tract, the
placenta and in amniotic fluid and suggested that
endometrial SP-D may prevent intrauterine infection
at the time of implantation and during pregnancy.
MacNeill et al. (30) reported that SP-A is an innate
immune factor, which is expressed in the vaginal
mucosa and is present in vaginal lavage fluid. Recent
studies of Condon et al. (31) showed that SP-A acts
as mediator of parturition by signaling initiation of
parturition.

E p i d e r m a l  s u r f a c t a n t  p r o t e i n s
The skin is the body's largest organ (comprising more
than 10 % of the body weight). Besides serving as the
physical boundary of the body, it has many functions
including thermoregulation, physical protection and
integrity against dangers from the environment and
contact with other objects, synthesis of vitamin D
(requiring UV radiation), protection of inner tissues
from dehydration and it also acts as a barrier preventing
systemic infection from invading surface
microorganisms, viruses and allergens (32).

The development in molecular genetic or recombinant
DNA techniques has yield much information about
skin structural proteins.  Some of these skin structural
proteins are specific for the epidermis. Epidermal

structural skin proteins include actin, a-actinin,
adducin, filaggrin, integrins, involucrin, keratins (skin
specific), locicrin spectrin and trichohyalin. In the
dermis, collagens, elastin, fibrillin, plectin and vimentin
are the major proteins (33).
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gland activity, synchronized with the desquamation
of foetal corneocytes during the last trimester of foetal
life (38). The proteolipid film slowly increases to
eventually fully cover the foetal skin surface during
the critical period of adaptation before birth .

It is possible that the surfactant system evolved initially
in the skin and was then subsequently utilized and
modified in the lung (39). Table 1 summaries the
common features that shared by lung and skin. In the
skin, lipid is present within intracellular lamellar
bodies localised in stratum granulosum layer, when
cell moves into the stratum corneum this lipid within
lamellar bodies is extruded into the intercellular spaces
to form lipid bilayers around and between corneocytes
(40). This process shares some of the common features
of pulmonary surfactant production by type II alveolar
cells. The main difference of lipid composition in lung
and stratum corneum is the lipid composition; lipid
in the stratum corneum is a mixture of cholesterol,
ceramides and free fatty acids (41).

The skin develops from surface ectoderm and from
mesoderm of the dermatome. The lateral plate
mesenchyme develops gradually and progressively
over the first six months, and end of the second
trimester. Particularly, during the third trimester of
human gestation there is a significant increase in the
turbidity of the amniotic fluid, which surrounds the
foetus in this period (34). The amniotic fluid turbidity
may be related to an increase in lung-derived
phospholipid and additionally to the presence of
lamellar bodies derived from type II cells within lung
tissue (35). Alternatively, this turbidity may arise
primarily from detachment of the vernix caseosa away
from the foetal skin surface (34-36). The mechanism
underlying vernix detachment from the skin surface
is still obscure. The vernix caseosa is a biologic film,
consisting of lipids and proteins, with both hydrophilic
and hydrophobic domains (37). This biofilm is
probably formed through an increase in sebaceous

Hormonal stimulus

Epidermal growth factor, glucocorticosteroids, T3

Function

Lipid secretion

Primary cell structure at air-gas interface

Delivery of barrier structural lipids

Lamellar body content  (protein)

Lamellar body content (lipid)

Epidermis

Lung

Serves as a topical barrier at environmental interface;
skin permeability barrier.

Forms a topical barrier at environmentalinterface;
 gas exchange surfaces.

Keratinocytes

From type II alveolar cell

Corneocyte

Type I alveolar cell

Lamellar bodies

Lamellar bodies

Acid phosphatases, glycosidases, proteases, lipases

Acid phosphatases, glycosidases, proteases,
lipases and surfactant proteins and lipids

~ 40 % phospholipids, 20 % glycolipids,
 20 % free sterols, 20 % other neutral lipids

85 % phospholipids, 10 % free sterols, 5 % neutral lipids

Epidermal growth factor, glucocorticosteroids, T3  (Thyroxine)

Epidermis

Lung

Epidermis

Lung

Epidermis

Lung

Epidermis

Lung

Epidermis

Lung

Epidermis

Lung

Table 1 Lung and skin: shared features (26).
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Figure 1. Epifluorescence appearance of skin
(x 200) (26).

The most  important function of the epidermis is
maintaining the barrier which protects the organism
against damage from the environment and desiccation.
This barrier is located in the upper layer of the
epidermal stratum corneum (SC) (Figure 1) (26) and
consists of at least two components: the proteinaceous,
highly cross-linked, cornified cell envelope and the
extracellular lipid lamellae (42). Barrier properties of
the SC are largely dependent on the intactness of the
lipid lamellae that surround corneocytes. The epidermis
contains keratinized stratified squamous epithelial
cells that are continously replaced from the subdermal
keratinocytes. These are stem cells in the basal
epithelial layer, which differentiate as they move
upwards. The epidermis is a highly differentiated
tissue, covered by corneocytes derived from matrix
cells at the border of dermis. The cornification is a

process which starts roughly 120 mm below the
corneocyte layer (43).

SC protects the underlying tissue and restrains
keratinocyte proliferation to maintain the required
levels of homeostasis of the epidermal barrier. This
barrier controls and regulates transcutaneous water
loss and the penetration of topically applied substances
into the epidermis. Therefore, it is very important in
determining the transdermal delivery of either
exogenous environmental agents or deliberately applied
pharmaceuticals (so-called 'transdermal' or 'topical'
drugs). The stratum corneum contains only 15 %
water, but 70 % protein and 15 % lipids. This
composition is quite different from that of the
epidermis, dermis or any other viable subdermal tissue.

The epidermal permeability barrier is enriched in
ceramides, free fatty acids and cholesterol (44).
Intercellular lipids are mainly cholesterol, ceramides,
and free fatty acids synthesized in the epidermis (45).
The organization of the stratum corneum has been
likened to that of a "brick wall" or "bricks and mortar
structure". The corneocytes can be represented as
bricks and the intercellular lipids as the mortar (46).
The barrier function of a normal epidermis depends
very much on the quality of its bricks and mortar. The
building blocks of the epidermal barrier are formed
during the complex terminal differentiation program
from inner living and dividing basal keratinocytes.
Culminating in the formation of flattened cornified
cells (corneocytes) which, as they are moved towards
the surface, are naturally sloughed by abrasion.
Corneocytes are anucleate cells composed of an
insoluble filamentous peripheral envelope. The high
water insolubility of this cornified cell envelope is
attributed the presence of highly cross linked proteins
through the formation of disulfide bonds (47) and N

(g-glutamyl) lysine isodipeptide bonds (48).
Additionally, various cysteine-rich proteins such as
loricrin (49), involucrin and cysteine-rich envelope
proteins also suggested as precursor proteins for the
cell envelope (50). The viable epidermis, localized
under the stratum corneum, is stratified and contains
10-20 layers of keratinizing epithelial cells. Its major
role is to synthesize new cells and to replace the
stratum corneum. Melanocytes, present within this
layer, are responsible for the skin pigmentation (51).
Langerhans cells are also present in viable epidermis
and participate in immunologic responses and antigen
presentation (52). The Merkel cells play a major role
in sensory reception (52). In pathological situations
such as psoriasis vulgaris, T-cells and neutrophils may
infiltrate into the epidermis.

Lipids are an essential component of the epidermis,
being involved in maintaining cell structure, controlling
growth and differentiation, determining cohesion and
desquamation and in formation and function of the
permeability barrier. The structure and composition
of the epidermal lipids are very important for normal
skin function. The epidermal lipids are phospholipids,
monohexosylceramides, ceramides, cholesterol and
its acyl esters, cholesterol sulfate, triglycerides, and
free fatty acids (53).
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Many reports have suggested a role for the lamellar
bodies in secreting and maintaining the permeability
barrier of the skin (54,55,56). In the non-keratinising
epithelia, at least two types of lamellar bodies may
contribute to this barrier function. The expression of
surfactant proteins by human skin tissues has been
showed by Kankavi using Western blotting,
immunohistochemical techniques, RT-PCR, and
souther blotting (27). There are no reports as yet in
the literature concerning the function of the surfactant
proteins in the skin except the presence of SP-D
mRNA in rat skin (23). Surfactant proteins A, B, C
and D are present in variable amounts in epidermis,
dermis, hair follicles, sweat and sebum, and surfactant
proteins may be critical to local barrier and defence
functions of the skin (26). Human keratinocytes
contains mRNA sequences specific for surfactant
proteins A, B, C and D (Figure 2) (26). Initially,
examination of fresh abdominal human skin samples
indicated the presence of SP-A, B, C and D by SDS-
PAGE and Western blotting with specific labelled
antibodies and having same moleculer weight in lung
and skin samples (Figure 4). Histological distribution
of surfactant proteins are within the structures of the
skin indicated that surfactant proteins mainly localize
on the epidermis layer of skin (Figure 3).  Figure 3
clearly shows that the SP-A, B and D specific
antibodies are bound to proteins in the epidermis (A,
B and D), dermis (B) and around the hair follicle (A,
B and D) structures of the skin (26). All skin surfactant
proteins showed cDNA similarity with those found
in the lung (Figure 2) (26). SP-A and SP-D also bind
D-mannose (Figure 5). The carbohydrate-binding
properties of SP-A and SP-D are quite similar that of
the SP-A and SP-D in lung. When a carbohydrate-
binding collectin such as SP-A and SP-D attaches to
the microbial surface, various host defence mechanisms
are initiated including neutralization, opsonization
and phagocytosis of the microorganism. Consequently,
their surface tension lowering and carbohydrate-
binding properties, surfactant proteins contribute to
the immune surveillance of the skin and  add to active
barrier mechanism.

                 SP-A             SP-B       SP-C         SP-D

M      L         S        L        S      L      S       L       S

400bp
300bp

Figure 2 RT-PCR amplification of surfactant proteins
from human skin. The PCR reactions were resolved
in a 2 % agarose gel, containing ethidium bromide
(0.25 µg/ml) and using a 0.5 x TBE (Tris-borate-
saline) running buffer (1 in 20 dilution of 10 x TBE:
0.89 M Tris base, 1.12 M boric acid, 0.02 M EDTA,
pH 8.0). (M: molecular weight marker, L: lung, S:
skin) (26).

Figure 3 Immunohistochemical localization of

surfactant proteins in normal human skin and hair

shaft. The tissues were stained using the peroxidase-

labelled secondary antibodies  technique and
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counterstained with Mayer�s hematoxylin. Original magnification for each section was: A: skin control without

primary antibody (25 x), B: hair shaft control without primary antibodies (40 x), C: SP-A in human skin (40

x), D: SP-A in hair shaft (40 x), E: SP-B in human skin (25 x), F: SP-B in hairshaft (40 x), G: SP-D in human

epidermis (40 x), and H: SP-D in hair shaft (40 x). Original magnification for each section was x 250. Control

sections without primary antibody A: skin and B: sebaceous gland and respective antibody stained sections and

D (26).

Figure 4. Western blotting of skin extract for SP-A, B, C and D using lung extract as a positive control.
Immunodetection was performed with specific anti-surfactant protein antibodies (26).

Figure 5.  Binding of mannose by

skin SPA and SPD in the presence

and absence of calcium ions

(33uM), data shown is the average

of duplicates (26).
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Figure 6 Surface tension reducing effects of surfactant proteins (1% A, B and D) from skin measured by the
Wilhemy balance. NS: normal sebum, AS: artificial sebum. (Insufficient SP-C was available for inclusion in
this analysis) (26).

The antibacterial activity of skin surface lipids is

primarily due to lipids secreted by sebaceous glands

and particularly their content of free fatty acids

(57,58,59). Human SC lipids, predominantly derived

from keratinocytes, also have a significant

antistaphylococcal activity (60). Sebaceous glands are

distributed all over the surface of skin with the

exception of the palmar and plantar regions (61). They

are abundant i.e. 300 to 900 per square meter in the

head neck and shoulder region (62,63,64). The forehead

is one of the sebum-rich areas (65). Androgenic

hormones secreted from testes, ovaries and adrenal

glands stimulate sebum secretion (66). Age and gender

are other determinants of sebaceous gland activity.

Sebaceous gland activity was found to be high in

utero, decreasing shortly after birth (67). From one

year after birth to puberty its level remains low(66,67).

Following an increase in circulating androgens, these

glands start to secrete increased amounts of sebum

until the late teens (66). Sebum has only limited barrier

properties as polar and non-polar materials can easily

penetrate through this layer (67,68). While the

epidermal barrier function largely depends on

intercellular lipids in the stratum corneum, skin surface

lipids are mainly derived from sebum. Native sebum

spreads on the skin instead of making droplets .

Following its secretion, sebum becomes mixed with

lipids from the keratinizing epithelium and this forms

the skin surface lipid film. A major function of sebum

is contributing to the defense function of skin against

microorganisms. The most   abundant free fatty acids

in sebum is palmitoleic (70). It was subsequently

shown that the most active antimicrobial fatty acid

within the sebum is palmitoleic acid (71).

Ultrastructural and in vivo studies have shown that

surfactant is produced by extrusion of the lamellar

bodies, which occurs in all serosal cells including

those in the synovium and peritoneum. Surfactant has

been shown to play a role in suppressing some

functions of immune cells within the lung and outside

the lung.

Erciyes Týp Dergisi (Erciyes Medical Journal)  28 (2) 082-091, 2006

Human Skin is as an Extra-Pulionary Site of Secretion of Surfactant Proteins



89

In-vitro studies showed that the surface tension of SP

deficient artificial sebum is lowered by skin SP-B and

SP-A and SP-D. A lower surface tension may enable

not only sebum to spread more efficiently over the

skin but also lower the interfacial tension allowing

better �wetting� of allergens and other extrinsic (non-

self) proteins (Figure 6). Consequently, as in the lung,

microorganisms and other foreign bodies on and in

the skin may be able to be more readily assessed and

recognized by host defense mechanisms. Studies on

lung surfactant proteins have shown that SP-A and

SP-D are the major immune reactive/defensive proteins

in this surfactant family. Mannose-binding and the

surface tension-lowering ability of skin SP-A and SP-

D were found similar to lung surfactant proteins,

indicating that they might bind to certain carbohydrate

domains on the external surfaces of many bacteria

and microorganisms with the presence of Ca++.  Thus

it can be hypothesized that surfactant proteins in the

skin have some putative functional role which is

similar to that exerted in other tissues.

Additionally, Narendran et al (40) have been suggested

that the increase in amniotic fluid turbidity with

advancing gestational age was secondary to an

interaction between pulmonary surfactant and vernix

caseosa. Therefore, roles of surfactant proteins in

human gestation must not be omitted.

This review describes recent observation of Kankavi

(26) and Mo et al. (2006) (72) regarding the detection

of surfactant proteins in skin and its appendages

(Figures 2,3,4). It can be postulated that surfactant

proteins present in these sites may contribute to host

defence function, although a role in surface tension

lowering (Figure 6) may also be possible.
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