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ABSTRACT
The tumour landscapes are varied, and depending on the orchestration of specific molecular pathways, signaling of its early 
manifestation could be understood. The conventional ways to signal the metabolic expression of cancers are notably via rec-
ognizing the altered glycolytic pathways in the cells whereby the transport of glucose is unchecked by the high demand of the 
ATP production by the cancer cells. It is notwithstanding that by relying on the glucose analogue (flurodeoxyglucose, FDG) 
signaling in cells, there are other cellular mechanism deemed to be explored, that is, the cell membrane or lipid metabolism. 
Molecular imaging–based nanoparticles are proving useful for cell trafficking studies, whereas radionuclide- and optical-based 
molecular–genetic reporters are yet to be determined. On the other hand, for receptor- or enzyme-based imaging or for 
studying the pharmacokinetic disposition of chemotherapeutic agents, the radionuclide-based techniques predominate. This 
review highlights the utility of the molecular imaging techniques in expressing the altered lipid metabolism, that is, choline 
transport in cells as an index of tumour aggressiveness in breast cancer.
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INTRODUCTION

Tumours vary depending on the regulation of specific molecular pathways; non-invasive molecular signaling of 
the its early clinical manifestation could lead to a better understanding of factors that underpin its cellular repro-
gramming. The conventional approaches to studying the metabolic expression of cancers depend on recognizing 
changes in glycolytic pathways and typically rely on the glucose analogue fluorodeoxyglucose. However, other cel-
lular mechanisms for the study of cancer are now being explored, including cell membrane and lipid metabolism. 
Nanoparticles are proving useful for cell trafficking studies, but radionuclide- and optical-based molecular–genetic 
reporters of cell trafficking remain relatively underdeveloped. However, radionuclide-based techniques are widely 
used for receptor- or enzyme-based imaging and for studying the pharmacokinetic disposition of chemotherapeutic 
agents. Here, we highlight the usefulness of molecular imaging techniques for examining altered lipid metabolism. 
We focus on choline transport as an index of tumour aggressiveness in breast cancer.

Choline in breast cancers
Choline levels are markedly higher in human breast cancer cells than in normal mammary epithelial cells (1). Cho-
line transport and phosphorylation are increased in human breast cancer cells. Progression of human mammary 
epithelial cells from a normal to a malignant phenotype is associated with an induced overexpression of choline 
kinase (CK) that catalyzes the phosphorylation of choline to form phosphocoline, followed by generation of phos-
phatidylcholine in the tumour cell membranes (2). In earlier studies, increased choline uptake in tumour cells was 
typically accounted for by an upregulation of CK due to an increased demand of membrane constituents. However, 
recent studies have found that cancer development is caused by choline intake (3). In addition, other studies have 
shown that CK and phosphorylcholine (PCho) production are increased in growth factor–induced mitogenic signal-
ing of primary human breast epithelial cells in response to insulin or hydrocortisone (4).

Cellular trafficking of choline transport
Imaging of tumour cell metabolism has been remarkably successful in the recent years. In the region of the mam-
mary gland, total choline is considered the most important metabolite for proton magnetic resonance (MR) spec-
troscopy. It has been reported that the degree of elevation in choline-containing compounds is related to tumour 
grade, with higher levels in high-grade than in low-grade lesions (5). Also, malignant lesions are more likely to 
show high levels of choline-containing compounds than benign or normal breast tissues. However, there have been 
mixed reports about choline-derived cancer cells and their significance for differentiating between benign and ma-
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lignant tumours (6). It is expected that 3-Tesla magnetic resonance 
imaging (3T MRI) will lead to the development of new surrogate 
molecular markers for aggressive lesions. 

Positron emission tomography (PET) and MR methods are clinically 
translatable; non-invasive imaging techniques are increasingly being 
used to detect physiologic changes and tumour responses to target 
therapy. There is a significant correlation noted between standard-

ized uptake value (SUV) max (3.06±2.34 g/dL) and the creatinine 
(3.39±0.54 U) and N-acetyl Aspartate (NAA) MRI parameters (6). 
The pattern of the metabolites concentration showed that the high-
est mean being creatinine followed by N-acetyl aspartate (NAA) 
(mean: 2.84±0.99 U) and choline (mean: 2.46±0.70 U). 

Choline imaging agents
In early approaches, choline was initially labeled with an 11-carbon, 
producing an isotopic tracer. Synthesis of [11 C]choline can be done 
by C-11 methylation (7). Depending on the method used, radio-
chemical yields of up to 95% can be achieved. [11 C] choline can 
be used to visualize a variety of tumours, including prostate cancer 
(8). However, for improved half-life, 18F-labeled choline derivatives 
have been developed. 18F labeling results in the analogue tracer [18 
F] fluoromethylcholine ([18F] FCH). Unlike [11C] choline produc-
tion, [18F] FCH synthesis is a two-step process (Figure 1).

High levels of pCho have been found in many cancers, with low lev-
els in the corresponding normal tissue. pCho is the first intermediate 
in the incorporation of choline into phospholipids via the Kennedy 
pathway (9, 10). However, whether the corresponding CK reaction 
or an upstream transporter are principally responsible for this tracer 
accumulation is currently uncertain. It has been demonstrated that 
the choline transport systems tolerate synthetic analogues. 

Inflammatory marker (CD47) in breast cancer
Cluster of Differentiation 47 (CD47) was originally identified in 
association with the integrin αvβ3, hence, its alternative name 
of integrin-associated protein (IAP). The human CD47 is a trans-
membrane protein belonging to the V-type Ig-like extracellular do-
main possessing immunoglobulin superfamily. CD47 partners with 
membrane integrins and binds the ligands thrombospondin-1 (TSP-
1) and signal-regulatory protein alpha (SIRPα) (11, 12). CD47 is 
involved in a range of cellular processes, including apoptosis, pro-
liferation, adhesion, and migration. CD47 also plays a key role in 
immune and angiogenic responses. CD47 is ubiquitously expressed 
in human cells and is overexpressed in various tumour cell types. 
Erythrocytes lacking CD47 expression are rapidly removed from 
the bloodstream by splenic red pulp macrophages (13). SIRPα is a 
transmembrane glycoprotein and acts as a novel intracellular signal 
transducer when it is engaged by its ligand, CD47. CD47-carrying 
normal peripheral blood red cells can circumvent elimination by 
binding to SIRPα (14). The interaction of CD47 with SIRPα occurs 
between host-derived cells and is mostly related to cell signaling in 
the immune and nervous systems (15).

Recently, it has been shown that macrophages can eliminate tu-
mour cells via a highly regulated immunosurveillance mechanism 
referred to as programmed cell removal (PrCR) (16). However, 
cancer cells often express CD47 and other antiphagocytic (protec-
tive) signals that protect them from PrCR-mediated recognition and 
phagocytosis. Unlike normal cells, many cancer cells express pro-
phagocytic (non-protective) signals (e.g., calreticulin or CRT) that 
interact with the Tec non–receptor protein tyrosine kinase family, 
which plays a vital role in the regulation of the innate immune 
response. Recently, it has been shown that macrophages express 
CRT and that Btk-mediated Toll-like receptor signaling results in 
trafficking of CRT to the cell surface, where this non-protective 
signal can contribute to the PrCR of cancer cells (17) (Figure 2).
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Figure 1. Schematic presentation of [18F] FECH and [11C]
choline uptake mechanism. Both tracers are transported into 
the cell via choline transport systems. In the cell, choline kinase 
phosphorylates the compounds resulting in the corresponding 
phosphorylcholine derivatives
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The production of CD47 (a cell surface protein) enables cancer 
cells to avoid destruction by macrophages and promotes further 
mitotic proliferation. CD47 levels are typically high in aggressive 
tumours. Reduction of CD47 levels in breast cancer cells increases 
killing by macrophages and depletion of cancer stem cells. There is 
increasing evidence indicating that CD47 expression is required to 
avoid innate immunosurveillance and elimination by phagocytosis 
in various human cancers (18). Hypoxia, a critical microenviron-
mental stimulus in advanced breast cancers, induces HIF-dependent 
expression of CD47, leading to decreased phagocytosis of cancer 
cells by macrophages and induction of the breast cancer stem cells 
(CSC) phenotype, which promotes cancer progression and patient 
mortality (19). However, an association between CD47 expres-
sion and choline metabolism has yet to be investigated. In breast 
cancer cases, carcinogenicity may promote the CD47-SIRPα cell 
signaling system in bone marrow and in peripheral blood, thereby 
creating cancer-specific microenvironments that support microme-
tastasis (20). 

Overexpression of CD47 is associated with poor prognosis of 
patients with breast cancer because of activation of the CD47-
SIRPα signaling pathway in circulating cells (20). Recent studies 
have shown that CD47 specifically inhibits phagocytosis and that 
there is a significant correlation between CD47 transcript levels 
and leukemia, hematopoietic stem cells, and tumour-initiating cells 
of bladder cancer (21). CD47 could work as a marker of self on 
cancer cells, and breast cancer cells may express high levels of 
CD47. The mean ratio of CD47/GAPDH mRNAs in the high-
expression group of cancer cases was found to be three to five 
times higher than in non-cancer cases (21). This may indicate that 
CD47 has various functions and that CD47 expression levels are 
affected by the cell environment, rather than by the number of can-
cer cells. Therefore, the high expression of CD47 in the bone mar-
row and peripheral blood of breast cancer patients might represent 
the characteristic appearance of breast cancer and, thus, provide 
evidence for a cancer-specific mechanism in the bone marrow and 
peripheral blood of patients with breast cancer. 

Overexpression of CD47 in bone marrow and peripheral blood 
has been reported to correlate with breast cancer aggressiveness. 
Therefore, it will be important to clarify CD47 expression levels 
in the bone marrow and peripheral blood of patients with breast 
cancer in order to determine whether micrometastasis is occurring. 
Thus, CD47 may be a novel biological marker capable of predict-
ing the number of highly malignant circulating tumour cells that es-
cape from the immune systems in patients with breast cancer (22).

Recent studies have found that high CD47 expression correlates 
with high CK19 expression in the bone marrow and peripheral 
blood of patients with breast cancer. The expression of CD47 in 
circulating tumour cells increases exponentially during cancer pro-
gression. Thus, isolated tumour cells (ITC)-derived CD47 might be 
an upregulating factor of breast cancer (23). 

Genetic probe with choline in breast cancer
Breast cancer is not a single disease with variable morphologic fea-
tures but rather a group of molecularly distinct neoplastic disorders 
(24). According to gene expression–based intrinsic classifications, 
breast carcinomas can be categorized into at least five subtypes: 

luminal A, luminal B, normal breast-like, human epidermal growth 
factor receptor 2 (HER2)-enriched, and a basal-like subtype. In ad-
dition to the distinctly different gene expression patterns, the sub-
groups also show significantly different clinical outcomes, likely due 
to alterations in specific cellular pathways. Moreover, tumours that 
appear to have similar diagnostic features do not always respond 
to treatment in the same way. This can be caused by differences 
in their mutational profile, signaling redundancy, and the particular 
tumour microenvironment, as well as by other factors (25).

Gene amplification often occurs in breast cancer cells, affecting 
multiple genomic regions. One of the most studied amplifications 
is located in chromosomal region17q12 and involves the ERBB2 
gene. ERBB2 encodes a transmembrane tyrosine kinase receptor 
of the ERBB/EGFR family, also frequently referred to as HER2 
(from human epidermal growth factor receptor or Her2/neu) 
(26). Amplification or overexpression of the ERBB2 gene occurs 
in approximately 15%–30% of breast cancers and is associated 
with increased disease recurrence and poor prognosis (27). These 
genes are observed in 18%–20% of breast cancers and can be 
used as selection criteria for HER2-targeted therapies. Patients 
with ErbB2-overexpressing breast cancer have substantially lower 
overall survival rates and shorter disease-free intervals than patients 
whose cancer does not overexpress ErbB2. Moreover, overexpres-
sion of ErbB2 leads to increased breast cancer metastasis (28). The 
important roles of ErbB2 in cancer progression render it a highly 
attractive target for therapeutic interventions of breast cancer. The 
associations between choline metabolism and ErB2 are not entirely 
understood, although it has been reported that transfection of hu-
man mammary epithelial cells with the erbB2 oncogene causes a 
significant increase in phosphocholine (PC) levels (29).

miRNA and breast cancer
miRNAs can have either oncogenic or tumour suppressor capa-
bilities (30). miR-21 can downregulate a variety of tumour sup-
pressor proteins. Among the targets of miR-21 are BCL2, PTEN, 
and tropomyosin 1, which are proteins implicated in proper cell-
cycle progression and regulation of apoptosis (31). It has also been 
shown that specific cancer types have specific miRNA expression 
profiles and that tumour miRNA patterns can be used to predict 
the effectiveness of cancer treatments and prevention strategies. 
Circulating microRNAs (miRNAs) are considered stable miRNAs in 
the serum/plasma. These miRNAs represent potential biomarkers 
for evaluating cancer, and many circulating miRNAs indicative of 
breast cancer have been identified (32). For example, the combi-
nation of miR-145/miR-15a and miR-451 has been shown to be 
useful for breast cancer detection (33, 34).

MRI spectroscopy choline in breast cancer types
Choline-containing compounds are the major components of cell 
membrane required for structural stability and cell proliferation. 
Elevated levels of total choline are primary due to an increase in 
choline metabolites, such as PC. By MR spectroscopy, elevated 
levels of total choline have been detected in several cancers, in-
cluding breast, prostate, colon, and brain cancers. Thus, elevated 
choline can be used as an in vivo biomarker for malignant disease 
(34). In line with this, a reduction in total choline has been sug-
gested as an in vivo marker for response to treatment. In cultured 
breast cancer cells, high choline levels were shown to contribute 
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to high levels of pCho and PC. Also, high levels of glycerophos-
phocholine (GPC) were detected in human breast cancer biopsies 
and xenograft (35).

Given that cancer tissues contain high amounts of choline, radiola-
beled choline and choline analogues are promising tools for cancer 
detection (36). Several fluorine 18–labeled choline analogues have 
been used as precursors for the biosynthesis of cellular membrane 
phospholipids (e.g., phosphatidylcholine). An increase in cell pro-
liferation or CK activity is associated with an increase in choline 
levels in cancer cells. Although choline-PET has been reported to 
be a good diagnostic technique for many tumour types, in practice, 
its clinical value is mostly limited to prostate cancer (36).

Human breast cancer cells and tumours exhibit consistently elevated 
levels of PC, allowing total choline levels to be used to discriminate 
between malignant and benign lesions. In addition, progressively 
elevated levels of total choline and PC were observed in immortal-
ized, oncogene-transformed, and tumour-derived breast epithelial 
cells. Aberrant choline phospholipid metabolism in breast cancer 
cells has been associated with increased choline transport and CK 
activity, as well as increased phospholipase D and phospholipase 
A2 activity (37). 

In a study of 184 breast cancer patients, Shin et al. (38) have 
shown that the use of spectroscopy-determined absolute choline-
containing compound peak integral, normalized choline-contain-
ing compound integral, and the signal-to-noise ratio can help with 
the differentiation of invasive ductal carcinoma (IDC) and ductal 
carcinoma in situ (DCIS). These same parameters could also be 
useful in determining tumour aggressiveness. In the same breast 
cancer patients, Mitsuhiro et al. found that the normalized choline 
signal correlated with the peak standardized uptake value (r=0.52; 
p<0.0001) in both the semi-quantitation of the choline levels (as 
measured using 1H MR spectroscopy) and FDG uptake (as mea-
sured using PET/CT). For patients with breast cancer with an 
invasive ductal carcinoma of 1.5–3 cm in size, the total choline 
levels in tumours measured by 1H-MR spectroscopy was highly 
correlated with the standardized 18F-FDG uptake values obtained 
by PET/CT (Figure 5-6). These measurements were also support-
ed by histologic prognostic parameters (nuclear grade, estrogen 
receptor status, and triple-negative lesion status). The sensitivity 
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Figure 5. a-c. (a) Circular region of interest (diameter, 1.5 cm) was placed over the tumour in the slice with the maximum SUV 
:3.49 μg/dL. (b) Circular region was drawn at the breast lesion with b value of 50 showed non-restricted with ADC value of 
1.65 mm2/s which were benign. (c) Peak of tCho with 1.41ppm and integral at 0.08 in benign tumour

a b c

Figure 4. Protective signal: cancer cells protect themselves 
against phagocytosis or programmed cell removal by 
overexpression of CD47. Interaction of these protective 
signals molecules with SIRPα on the cell surface of 
macrophages protects cancer cells from phagocytosis. Non-
protective signal: inhibition of the interaction between CD47 
and SIRPα and translocation of calreticulin from the ER to the 
cell surface promote phagocytosis
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Figure 3. Fused 18F-Flurocholine PET-CT (left), axial CT 
(right upper), and FCH-PET (right lower), showing the FCH 
uptake of the metastatic breast lesion in the right lung apex



and specificity of the total choline level (as determined by 1H-MR 
spectroscopy) for detecting breast cancer were 83% and 85%, re-
spectively, and both values could be as high as 92% after technical 
exclusions (39).

Choline and fluorodeoxyglucose
Generally, malignant cells have enhanced glucose metabolism due 
to accelerated tumour growth, as well as an increase in glucose 
transporter proteins compared to non-malignant cells, and thus an 
increased glycolytic activity. This high glycolytic activity eases the 
detection of malignant cells by FDG-PET imaging. Unfortunately, 
18F-FDG is not a cancer-specific tracer because it also has an in-
creased uptake in inflammatory and infectious lesions and even in a 
significant number of physiologic processes, such as brain glucose 
uptake or muscle uptake (40). Although many radiotracers have 
been developed for PET imaging, most breast cancer imaging stud-
ies have been performed with FDG. FDG is a glucose analogue 
transported via glucose transporters into the cells, where it is phos-
phorylated by hexokinase. FDG becomes metabolically trapped in 
tumour cells at a rate proportional to glucose utilization and there-

fore, glucose metabolism (41). Many studies have demonstrated 
the high sensitivity and specificity of FDG-PET for the detection of 
primary large and palpable breast tumours (42). Nevertheless, this 
sensitivity decreases when the lesions are small and non-palpable, 
low-grade, or non-invasive neoplasms. As mentioned above, FDG-
PET has been used in breast cancer for diagnosis, staging, and 
re-staging, and treatment response evaluation. In PET imaging, 
18F-FDG may hamper detection of certain breast cancer types 
(e.g., lobular type) because of their low glucose metabolism. Thus, 
18F-FDG has limited value in workup studies (43–45). 18F-FDG 
and 18F-fluorocholine (18F-FCH) combination are potentially bet-
ter than a single tracer signaling of the 18F-FDG in improving the 
sensitivity of the detection rates. 

There is little evidence to suggest that choline PET can be useful 
for the detection of breast cancer. Increased choline metabolism 
has been noted during the transition of normal human mammary 
epithelial cells to immortalized, oncogene-transformed, and non-
metastatic and metastatic cancers. There is a switch from predomi-
nantly higher intracellular metabolite levels of GPC (degradation 
pathway) to predominantly higher PC levels (biosynthetic path-
way) early during cell transformation (46). PC levels then increase 
throughout disease progression (46). Studies in mammary epithe-
lial cells have shown that aberrant increases in PC metabolite lev-
els are due to the expression of the biosynthetic enzyme choline 
kinase-α (46).

Breast cancer cells have an increased uptake of choline, and 11C-
choline PET/CT has been used to accurately localize malignant 
tumours (47). The relatively long half-life of 18F- FCH (110 min) 
means that it can be produced off-site, which is a major practical 
advantage for its use in imaging (48). Also, 18F- FCH is already 
being used in the evaluation of prostate cancer and is, therefore, 
more widely available than other radiotracers (49).

18F-FCH PET-CT is a promising tool and is being used to detect 
prostate cancer with greater accuracy than the semi-quantitative 
analysis of the degree of inherent choline uptake (SUVmax). (50–
52). 

CONCLUSION

Conventional clinical molecular imaging, that is, with radionuclide-
based probes, has been practiced for many years and is a grow-
ing field with the development of ever more selective receptor-, 
enzyme-, and transporter-based imaging agents. We are beginning 
to see the first applications of MR-PET genetic-based clinical mo-
lecular imaging, particularly for cell trafficking studies to unveil the 
potential association of the lipid metabolism of the cell membranes 
and the associated expression of genetic and inflammatory molecu-
lar markers as discussed to discover a potential mechanism that un-
derpin the cellular reprogramming of an aggressive breast cancers. 
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Figure 6. a,b. (a) Circular region of interest (diameter, 1.5 cm) 
was placed over the tumour in the slice with the maximum SUV: 
2.33. (b) Circular region was drawn at the breast lesion with b 
value of 50 showed non-restricted whereas the b value of 900 
showed restricted with ADC value of 0.66 which were malignancy

a

b
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