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ABSTRACT
Objective: Cyclophosphamide (CP), as an anticancer agent has side effects, especially hepatotoxicity. Cerium oxide nanopar-
ticles [nanoceria (NC)], which act as antioxidants, have a protective effect against oxidative stress-induced toxicity. This study 
evaluated the preventive effect of NC in hepatotoxicity induced by CP.

Materials and Methods: Thirty-two mice were randomly distributed into four groups: control (received only normal saline), 
NC (received NC 100 μg/kg for 3 days, intraperitoneally), CP (received CP 200 mg/kg single dose on the third day of the 
study, intraperitoneally), and NC+CP (NC 100 μg/kg and CP 200 mg/kg). Two days after the final treatment, oxidative 
stress marker (MDA and GSH) and alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phos-
phatase (ALP) levels were measured, and histopathological and immunohistochemical examinations were performed for 
determining the effects of NC on hepatotoxicity.

Results: CP-induced hepatotoxicity was evident by the significant elevation of liver enzyme levels and alteration in oxidative 
stress marker levels. Additionally, histopathological changes and apoptosis were markedly increased. NC decreased MDA 
level, increased GSH level and decreased liver enzyme levels in CP-treated mice. In addition, NC pretreatment could be al-
leviated by the immunoreactivity of caspase-3 in CP-treated mice compared with the CP group. 

Conclusion: NC showed a potent antioxidant effect in hepatotoxicity induced by CP. The study suggested that NC through 
its antioxidant and anti-apoptotic properties has a protective effect against hepatotoxicity induced by CP.
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INTRODUCTION

Cyclophosphamide (CP), as an alkylating mediator for chemotherapy and immunosuppressor, often has deleteri-
ous side effects, especially hepatotoxicity (1). Phosphor amide mustard and acrolein are two major metabolites 
of CP that are produced in the liver by microsomal cytochrome P450 (2). These metabolites with alkylation of 
nucleophilic sites in DNA, RNA, and protein cause cellular toxicity and genotoxicity (3). CP, with the generation 
of free radicals and induction of oxidative stress, results in organ damage (2), such as hepatotoxicity (4). In CP 
therapy, various liver injury enzymes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
and alkaline phosphatase (ALP) , and Lactate dehydrogenase (LDH) are released from the hepatocytes into blood 
circulation (4). However, despite the severe toxicity of CP in experimental animal and human studies (5, 6), clini-
cians have been prescribing it as the first-line treatment for patients with cancer. Several studies have confirmed 
that exogenous antioxidants with pre, post, or co-treatment could attenuate the side effects induced by CP and 
other chemotherapy drugs (7-9).

Due to the widespread use of cerium oxide nanoparticles [Ceo2 NPs; nanoceria (NC)] in the industry and their 
application in medicine and biology, recently, researchers have been interested in evaluating their antioxidant 
properties (10). NC with free radical scavenging (11) has a protective effect against oxidative stress. This element 
along with a reduction in the accumulation of reactive oxygen species (ROS) inhibits apoptosis due to antioxidant 
effects (12). NC, as one of the most important classes of nanomaterial and with the redox capability, have anti-
oxidant properties that scavenge free radicals (13). The protective effect of NC in in vitro and in vivo studies has 
been demonstrated (13, 14). However, this effect on hepatotoxicity induced by CP has been not established. The 
present study mainly aimed to determine the protective effect of NC on hepatotoxicity induced by CP in a mice 
model. The extent of the protective effect of NC was determined by assessing oxidative stress marker levels, liver 
injury indexes (ALT, AST, and ALP), and histopathological and immunohistochemical assays in mice.
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MATERIALS and METHODS

Animals and Materials
Thirty-two male BALB/c mice weighing 25-30 g were prepared 
by the Institutional Animal Care, and their use was approved by 
the Ethics Committee of the Medical science of Mazandaran Uni-
versity, Sari, Iran (ID: IR.MAZUMS.REC.1395.S222). For adapt-
ing to the experiment environment, the animals were housed in 
a 12-h light and dark cycle at 20°C-25 °C for 1 week. They had 
free access to food and water throughout the study period. CeO2 
NPs were obtained from Neutrino Co. (Tehran, Iran). CP was pur-
chased from Baxter Company (Unterschleißheim, Germany).

Study Design
In this study, the animals were randomly divided into four groups 
(8 mice/group): control group (mice received normal saline; same 
volume as in other groups); NC group [mice received NC at a dose 
of 100 µg/kg intraperitoneally (IP) for 3 consecutive days]; CP 
group (mice received 200 mg/kg of CP by IP on the third day); 
and NC+CP group (mice received NC and CP at the same dose as 
that in the NC and CP groups; 

The dose of NC was selected according to the pilot study, and 
that of CP was selected according to previous study (15). NC was 
suspended in distilled water and CP was dissolved in normal saline. 
After two days, serum biochemical, histochemical, histopathologi-
cal, and immunohistochemical assays were evaluated.

Specimen Collection
Mice were anesthetized with ketamine (50 mg/kg) and xylazine 
(5 mg/kg) 2 days after drug administration. Blood samples were 
collected from the heart. Serum was separated from the coagu-
lated blood by centrifugation at 3000 ×g for 15 min and stored 
at −20°C for evaluating serum liver enzyme levels. Then, animals 
were sacrificed, and the liver was immediately removed. It was di-
vided into two pieces, washed with cold phosphate buffer saline 
(PBS), and weighed. For biochemical evaluation, one of the two 

pieces was freshly used. The other pieces were fixed with buffered 
formalin (10%) for histopathological and immunohistochemical as-
sessment. 

Measurement of Malondialdehyde (MDA)
MDA as a lipid peroxidation (LPO) marker was measured accord-
ing to the previous standard method. The liver sample was homog-
enized, and 0.1 mL of this sample, 1 mL of 0.6% 2-thiobarbituric 
acid, 3 mL of 1% phosphoric acid, and 0.1 mL of distilled water 
were mixed. After 45 min of boiling in a water bath, the mixture 
was cooled, and then n-butanol (4 mL) was added to extract the 
cold thiobarbituric acid reactants. Next, the samples were centri-
fuged for separating the butanol layer. The optical density of the 
N-butanol layer was determined by spectrophotometry. MDA con-
centration was expressed as µg/mg protein.

Measurement of Glutathione (GSH) Content
Glutathione level in the liver was determined with 5,5’-dithiobis-
2-nitrobenzoic acid (DTNB) as an index at 412 nm by spectropho-
tometer (UV-1601 PC, Shimadzu, Japan) and expressed as μM.

Serum Biochemical Assay
The activities of alanine aminotransferase (ALT), aspartate amino-
transferase (AST), and and alkaline phosphatase (ALP) were deter-
mined by a Chemistry Analyzer (Tokyo Boeki Prestige 24i) using 
the quantitative detection kit Pars Azmoon (Iran) for AST (Cat. No. 
1 400 018), ALT (Cat. No. 1 400 019), and ALP (Targa BT 3000, 
Cat. No. 12201).

Histopathological Assay
For the histopathological assay and to determine the effect of CP 
and NC on the liver, samples were fixed in 10% (w/v) buffered 
formalin for 24 h. After processing and embedding in paraffin us-
ing a standard protocol, sections with 5-µm thickness were stained 
with hematoxylin and eosin (H & E) for the evaluation of liver dam-
age. Sample sections were evaluated using 40× magnification for 
the assessment of the extent of liver injury by a histologist who 

Figure 1. Effect of NC on CP-induced liver damage assessed using MDA and GSH levels. MDA levels increased and GSH levels 
decreased in CP-treated mice compared with the control group (p<0.05). Treatment with NC in CP-treated mice significantly 
decreased MDA levels and increased GSH levels in the liver tissue (p<0.05) compared with the CP group. All the values are 
expressed as the mean±SD. a, significant vs control; b, significant vs NC; c vs CP groups; *, p<0.05; **, p<0.01, and ***, 
p<0.001. CP; cyclophosphamide, NC; nanoceria.
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was blinded to the treatment groups. For semiquantitative analy-
sis, histological micrographs were assessed by a scoring system. 
According to the severity, sinusoidal dilatation, inflammatory cell 
infiltration, congestion, degeneration, and cytoplasmic vacuolation 
were scored as 0 (normal), 1 (mild), 2 (moderate), and 3 (severe).

Immunohistochemical Assay
The immunohistochemical procedure was performed according to 
the guidelines of the kit manufacturer (Abcam Company, USA). 
First, tissue sections were deparaffinized with xylene and then 
rehydrated in alcohol series. Next, they were incubated in 0.3% 
H2O2 in methanol for 15 min to block the endogenous peroxidase 
activity. Then, the tissue sections were incubated with a protein 
blocker for 10 min. After incubation with primary antibodies (anti-
caspase 3 rabbit polyclonal antibody, 1:100 in PBS, v/v, Abcam, 
Lat: GR224831-2) at 4°C overnight, secondary antibody (mouse- 
and rabbit-specific HRP/DAB, Abcam, Lat: GR2623314-4) for 
20 min, and diaminobenzidine tetrahydrochloride for 5 min (16). 
Then, the slides were dehydrated in alcohol series. Finally, all the 

slides were assessed under a light microscope with 40× magnifica-
tion. For quantitative investigation, immunohistochemical micro-
graphs were evaluated using ImageJ software (MacBiophotonics, 
version 1.41a) by densitometry. The positive staining severity was 
determined as the ratio of the stained area to the entire field area.

Statistical Analysis
Data were analyzed by The Statistical Package for the Social Sci-
ences (SPSS) version 19 (IBM Corp.; Armonk, NY, USA) and 
Prism (GraphPad, version 6.07, USA) software. All the data are 
expressed as the mean±SD. Different groups were compared us-
ing one-way ANOVA and Tukey tests. A p-value of <0.05 was 
considered statistically significant.

RESULTS

Effects of NC on Oxidative Stress in CP-Treated Mice
MDA, which is the final product of LPO, and GSH levels in the 
liver tissue are presented in Figure 1. MDA level was significantly 

Figure 2. a-d. Photomicrographs showing the effect of NC and CP on the histological architecture of the liver in the groups. 
Control (a), NC (b), CP (c), and NC+CP (d) groups. Normal structure in control and NC groups, hepatic tissue disorganization, 
dilation sinusoids (thick black arrow), hyperplasia in Kuppfer cells (narrow black arrow), hemorrhage in the central vein (narrow 
white arrow), congestion and vacuolization, granulomatous formations (thick black arrow) in the CP group. Treatment with 
NC improved these changes. (H & E staining; magnification: 40×; scale bar=100 µm). CP, cyclophosphamide; NC, nanoceria.
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increased and GSH level was decreased in CP-treated mice com-
pared with the control group. In contrast, NC administration in 
CP-treated mice significantly decreased the MDA level compared 
with the CP and control groups, whereas the GSH level was signifi-
cantly increased compared with the control groups.

Effects of NC on Serum Enzyme Levels in CP-Treated Mice
Cyclophosphamide administration in mice significantly increased 
serum hepatocellular injury biomarker levels (AST, ALT, and ALP) 
as presented in Table 1. Furthermore, the administration of NC 
alone changed the levels of serum marker enzymes of hepatic dam-
age but not significantly. Co-administration of NC with CP signifi-
cantly alleviated the elevated levels of serum marker enzymes of 
the liver, but this decline was not statistically significant for ALP 
compared with that in the CP group.

Effect of NC on the Histopathology of the Liver in CP-Treated Mice
The micrographs of the liver in all the groups are shown in Figure 
2. Normal histoarchitecture of the liver with normal hepatocytes, 

Kupffer cells, and sinusoidal space with normal hepatic lobules 
were seen in the control group (A). The structure of the liver in mice 
treated with only NC (B) was similar to that in the control group. 
Liver sections in the CP-treated group showed periportal leucocyte 
infiltration, dilation in sinusoidal space (thick black arrow), focal 
necrosis with pyknotic nuclei, hepatocyte vacuolation, hyperplasia 
in Kuppfer cells (narrow black arrow), congestion, granulomatous 
formation (thick black arrow), and hemorrhage in the central vein 
(narrow white arrow) (C). Conversely, NC administration in CP-
treated mice regressed the pathological changes compared with 
those in the CP-treated group (D). The mean liver injury scores of 
all the groups are shown in Figure 3. Liver injury scores increased 
in CP-treated mice. Liver injury scores in the NC+CP group were 
significantly alleviated compared with the CP group.

Effect of NC on the Expression of Caspase-3 in CP-Treated 
Mice
Immunohistochemical photomicrographs of the liver are shown in 
Figure 4. The section of the liver in the control group did not show 
apoptosis. Immunoreactivity of caspase 3 was approximately simi-
lar in the control (Figure 4a) and NC (Figure 4b) groups. Increased 
immunoreactivity of caspase-3 was observed in CP-treated mice. 
Immunoreactivity staining was seen in the hepatocytes, especially 
in the periportal area (Figure 4c). Immunoreactivity staining of cas-
pase 3 was weak in the NC+CP group (Figure 4d) compared with 
that in the CP group.

Semiquantitative investigation of caspase 3 staining is shown in 
Figure 5. The most severe immunoreactivity of caspase 3 was 
seen in CP-treated mice (22.1±5.92) compared with other groups 
(p<0.05). NC administration in CP-treated mice mitigated the se-
verity of immunoreactivity of caspase 3 (13.03±3.93). Immunore-
activity of caspase 3 in the NC group was approximately similar to 
that in the control group.

DISCUSSION

Cyclophosphamide, a chemotherapeutic agent, has side effects, 
especially hepatotoxicity. Currently, NC, which has antioxidant 
properties, is an appropriate candidate for the reduction of oxida-
tive stress due to medicines (17). To appraise NC as the potential 
therapeutic antioxidant, we investigated serum biochemical, histo-
chemical, histopathological, and immunohistochemical measure-
ments in hepatotoxicity induced by CP. Our data showed that NC 
reduces oxidative stress, histopathological change, and apoptosis 
induced by CP. Oxidative stress occurs due to an imbalance be-
tween oxidants and antioxidants status and can be determined by 
the evaluation of oxidative stress parameters. GSH as an important 
antioxidant in different redox species (18) plays a role in cytopro-
tection against oxidative injury. In clinical applications, CP pro-
duces oxidative stress that has a significant role in the occurrence 
of hepatotoxicity. CP can inhibit antioxidant enzyme activities and 
reduce GSH levels (19). In the present study, the administration of 
CP had a direct effect on oxidative marker levels. The administra-
tion of CP caused a significant increase in MDA levels and decrease 
in GSH levels, which was confirmed by the histochemical assay. In 
addition, NC administration in CP-treated mice improved oxida-
tive stress marker levels, possibly due to the antioxidant effects of 
NC. Nrf2 is a key protein regulating the expression of antioxidant 

Table 1. Effect of NC on serum marker enzymes of hepatic 
injury (AST, ALT, and ALP) in CP-treated mice in all the groups.

Groups AST ALT ALP

Control 56.50±3.42  40.60±8.96  154.4±41.4 

NC 67.75±5.85 49.80±8.04  173.8±31.34 

CP 128.3±18.46a***b*** 66±10.80a**b*c** 302.2±46.64a***b***

CP+NC 86.25±16.21a*c** 44.60±4.78c** 240.8±16.07a**b*

Values are expressed as the mean±SD. Mice treated with CP showed 
a decrease in the levels of serum marker enzymes. Pretreatment with NC 
significantly increased these serum marker levels. All the values are expressed 
as the mean ± SD. a, significant vs control; b, significant vs NC; c vs the CP 
groups; *, p<0.05; **, p<0.01 and ***, p<0.001. CP: cyclophosphamide; NC: 
nanoceria; ALT: alanine aminotransferase; AST: aspartate aminotransferase; 
ALP: alkaline phosphatase.

Figure 3. Liver injury score in the liver tissue. The highest 
score was for the CP group. NC decreased liver injury score 
in the NC+CP group. Data are presented as the mean ± SD. a, 
significant vs control; b, significant vs NC; c vs the CP groups;*, 
p<0.05;**, p<0.01, and***, p<0.001. CP; Cyclophosphamide, 
NC; nanoceria.
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proteins. NC decreased the transfer of Nrf-2 from the cytoplasm 
to the nucleus and subsequently reduced the gene expression of 
HO-1. Thus, NC can increase GSH, GPX1, SOD, and catalase 
levels and act as a powerful antioxidant to protect organs against 
oxidative injury (20).

Nanoceria switches between Ce3+ and Ce4+ states and scavenges 
free radicals (21). Cerium can easily, rapidly, and reversibly release 
oxygen. A reduction in ROS levels can decrease oxidative stress 
and subsequently reduce tissue injury. NC is accumulates in the 
plasma membrane and mitochondrial outer membrane (21) and ef-
fectively protects mammalian cells against ROS-induced oxidative 
stress injury (22). A study found that NC, with accumulation in the 
hepatocyte membrane, protected hepatotoxicity induced by mono-
crotaline (23). Furthermore, it can increase cellular resistance to 
exogenous oxidative stress. A previous article reported the protec-
tive effect of NC against radiation-induced oxidative damage (24). 
In addition, NC showed cardioprotective effect against monocyte 
chemo-attractant protein 1 in transgenic mice (25). Our results are 

consistent with other study results that demonstrated hepatopro-
tection by NC (20). Differences in size, shape, dose, method of 
preparation, and surface charges during the synthesis process may 
affect the study findings (26). Biodistribution of NC is mainly in the 
spleen and liver (27). On the other hand, processing of NC and its 
transformation in the liver has been demonstrated in a previous 
study. NC after transformation has increased ROS-scavenging abil-
ity (28). Our study confirmed that NC with anti-oxidative properties 
has a protective effect against oxidative stress and free radicals.

In animal and human studies, CP-induced hepatotoxicity and in-
creased enzymes marker levels have been observed (4). ALT, AST, 
and ALP are biomarkers of hepatic damage and toxicity. Elevation 
in these marker levels could be attributed to the release of these 
enzymes from the cytoplasm of hepatocytes into blood circulation 
(3). In the present study, we demonstrated serum hepatic enzyme 
marker (AST, ALT, and ALP) levels to be increased in CP-treated 
mice. This is in agreement with other previous studies (4). How-
ever, treatment with NC improved the hepatic marker enzyme lev-

Figure 4. a-d. Immunohistochemical staining. Caspase 3-positive cells are shown with brown color. Immunohistochemical 
staining in (a) control and (b) NC groups showed no caspase 3 immunoreactivity. (c) Immunohistochemical staining displayed 
caspase 3 immunoreactivity in the CP group in the hepatocytes of the pericentral vein (d). NC treatment decreased caspase 3 
immunoreactivity in CP-treated mice. CP; cyclophosphamide, NC; nanoceria.
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els toward normal, thus indicating hepatoprotective effects of NC 
against toxicity induced by CP.

Histopathological changes in the liver were determined by light 
microscopy. Hepatic enzyme marker levels confirmed liver dam-
age. Parenchymal degeneration, central vein dilatation, conges-
tion, edema, sinusoidal dilatation, neutrophil infiltration, necrosis, 
vacuolization in hepatocytes, and cell proliferation in the periportal 
area were seen in the CP group. The results were consistent with 
the findings of other studies that found that acrolein has a role in 
inflammatory response, hemorrhage, and necrosis (19). NC could 
inhibit liver damage and preserve the liver histoarchitecture. It has 
been previously shown that NC has a hepatoprotective effect in D-
GALN/LPS-induced hepatotoxicity in a mice model (20).

Nanoceria inhibits the programmed cell death pathway With the 
effect on the production of free radicals , thereby inhibits apoptosis 
(29). The important result of this research is that NC significantly 
prevents apoptosis via decreasing the immunoreactivity of caspase 
3 in CP-induced apoptosis. CP, with generation of oxidative stress, 
crosslinks in DNA–DNA and DNA–protein, cause DNA damage 
(3). Kwon et al. (30) found that NC is mainly localized in the mi-
tochondria, mitigates oxidative stress and subsequent mitochon-
drial damage, and suppresses cell death. Furthermnore, NC down-
regulates the expression of genes involved in apoptosis signaling 
pathways, thereby having a protective effect on the tissue (11). 
The activation of caspases induces apoptosis which cleaves intra-
cellular proteins (31). NC can decrease caspase 8 mRNA expres-
sion and caspases 9 and 3 activities (11). In the present study, CP 
significantly increased apoptosis in hepatocytes, especially in the 
periportal area, whereas treatment with NC significantly decreased 
apoptosis. These findings clearly indicated the potential role of NC 
in the inhibition of apoptosis.

In a pilot study, NC induced severe toxicity at a dose of 5 mg/kg 
for 7 days. While Khaksar et al. (32) showed that NC (35 mg/kg 

daily for 2 weeks) has a protective effect against diazinon-induced 
pancreatic damage. They also showed that NC decreases oxida-
tive stress and apoptosis (caspase 3 and 9). Serebrovska et al. (33) 
showed that NC at a dosage of 0.6 mg/kg four times had an anti-
inflammatory and antioxidant effect. They administered NC with 
an orogastric catheter, whereas we used NC 100 µg/kg for three 
times via intraperitoneal administration.

Chemotherapeutic effects of NC have been shown in human 
melanoma cells during doxorubicin treatment. Furthermore, NC 
enhances the antitumor activity of doxorubicin and increases apop-
tosis in cancer cells. NC also has cytotoxic effects; however, co-
treatment of cancer cells with doxorubicin and NC showed syn-
ergistic effects (34). In our pilot study, we observed the cytotoxic 
effect of NC at a dose of 5 mg/kg, and co-treatment of NC and CP 
markedly decreased oxidative stress marker levels, liver injury en-
zyme levels, histopathological changes, and apoptosis in the liver 
(not published). Akhtar et al. (35) investigated the effect of NC with 
20, 50, 100, and 200 µg/ml concentrations on oxidative stress 
induced with H2O2 in vitro. They showed that NC has no effect on 
cell death. Furthermore, NC maintained cell viability by increasing 
glutathione (GSH) levels.

CONCLUSION

In summary, we reported the protective effect of NC on CP-
induced hepatotoxicity. NC with antioxidant and anti-apoptotic 
properties inhibited the degeneration in the liver tissue. Thus, NC 
is potentially useful as a chemoprotective agent in patients with 
cancer who are treated with CP.
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