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Prediction of COVID-19 Based on Genomic Biomarkers 
of Metagenomic Next-Generation Sequencing Data 
Using Artificial Intelligence Technology

Objective: The primary aim of this study was to use metagenomic next-generation sequencing (mNGS) data to identify 
coronavirus 2019 (COVID-19)-related biomarker genes and to construct a machine learning model that could successfully 
differentiate patients with COVID-19 from healthy controls.

Materials and Methods: The mNGS dataset used in the study demonstrated expression of 15,979 genes in the upper air-
way in 234 patients who were COVID-19 negative and COVID-19 positive. The Boruta method was used to select qualitative 
biomarker genes associated with COVID-19. Random forest (RF), gradient boosting tree (GBT), and multi-layer perceptron 
(MLP) models were used to predict COVID-19 based on the selected biomarker genes.

Results: The MLP (0.936) model outperformed the GBT (0.851), and RF (0.809) models in predicting COVID-19. The 
three most important biomarker candidate genes associated with COVID-19 were IFI27, TPTI, and FAM83A.

Conclusion: The proposed model (MLP) was able to predict COVID-19 successfully. The results showed that the generated 
model and selected biomarker candidate genes can be used as diagnostic models for clinical testing or potential therapeutic 
targets and vaccine design.
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INTRODUCTION

The SARS-CoV-2 virus, which first emerged in China in December 2019, triggered the world’s first coronavirus 
pandemic. The disease caused by the virus, coronavirus 2019 (COVID-19), spread quickly around the world and 
became a significant public health problem (1, 2). More than 500 million confirmed cases and more than 6 million 
deaths have been reported globally, according to the World Health Organization (2). The rapid transmission of 
this novel virus and the sudden rise in the number of patients and patient deaths led to substantial disruption and 
prompted immediate research efforts.

Common COVID-19 symptoms include fever, cough, pneumonia, weakness, chest pressure, diarrhea, and short-
ness of breath. Because the symptoms are similar to those of influenza, it can be difficult to diagnose COVID-19 
in the early stage. However, it is critical to identify and isolate positive cases as soon as possible to reduce trans-
mission of the virus and begin treatment. As a result of the quick disease progression and a high mortality rate, 
healthcare resources in many countries became severely overburdened. It was critical to determine factors that 
might assist in diagnosis and influence the prognosis and treatment methods (3, 4).

One of the most common methods of detecting COVID-19 is reverse transmission polymerase chain reaction 
(RT-PCR) testing. However, the sensitivity and accuracy of RT-PCR testing has been called into question in various 
investigations. RT-PCR tests can produce a significant number of false positives and negatives (4, 5). Computed 
tomography (CT) scans, chest X-rays, and ultrasound scans are also used to detect COVID-19. The literature in-
cludes research based on machine learning (ML) that has successfully identified COVID-19 utilizing these images. 
However, there are also certain drawbacks. COVID-19 and other types of viral pneumonia may have few visible 
characteristics in the early stage, and it can be difficult to distinguish between respiratory viruses, so medical scan 
images may be insufficient (6). A lack of findings of COVID-19 on chest X-rays, CT scans, or ultrasound scans is 
not proof of absence. At the time of the outbreak, there were also few annotated images of different types that 
could be used in image-based studies (6, 7).

Although numerous approaches to detect the virus have been examined, thorough knowledge of the scientific and ge-
netic character of the virus is extremely valuable. The genomic structure, gene regions, protein binding sites, attachment, 
and neutralizing structures of the virus, among other information, provides important guidance. In addition, detailed 
research of the viral host response aids understanding of how it spreads and what treatments might work best (8, 9).
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The risk of pre-symptomatic transmission and developing 
severe symptoms increases when diagnosis is delayed (10). 
Though progress has been made, a reliable method of early 
detection and diagnosis of COVID-19 infection continues to 
be important.

Metagenomic next-generation sequencing (mNGS) is an agnostic 
method to identify microorganisms from a clinical specimen using 
high-throughput sequencing and automated bioinformatic analy-
sis. Coinfections can affect illness development and prognosis, and 
mNGS can provide valuable information on the composition of the 
microbiome. Therefore, mNGS technology can provide more pre-
cise information and serve as a useful tool to detect the coronavirus 
responsible for COVID-19 and other organisms that may have an 
effect on the prognosis (11).

The interest in artificial intelligence (AI) and ML technologies has 
increased rapidly in recent years. AI and ML are data-driven and 
use statistical concepts to learn from examples and errors and 
to improve with additional data. AI uses logic to simulate human 
reasoning. ML is a subfield of AI. Models are used to promote 
development based on experience without explicit programming. 
AI and ML can be used as a clinical support system, including the 
identification of disease-related biomarkers, aiding in disease di-
agnosis and prognosis, estimating treatment efficacy, refining in-
dividual treatment plans, and acting as an early warning system. 
The use of computer algorithms can advance early detection and 
treatment of critical illnesses, and may facilitate management of 
high-risk patients (12–14).

ML has been used with various medical datasets, such as clinical, 
radiological image/video, genetic information, and proteins, in the 
effort to combat COVID-19 (5, 15–17). ML methods can help to 
distinguish individuals infected with COVID-19 from healthy indi-
viduals using genomic data and to help find new treatment options. 
The goal of this study was to use mNGS data to find COVID-19-
related biomarker candidate genes and to build an ML model that 
can predict COVID-19.

MATERIALS and METHODS

Dataset
This research used an open mNGS dataset of 234 patients 
provided by the University of California. In the cohort, 141 
(60.3%) of the patients had negative PCR results for COVID-19 
and 93 (39.7%) had positive PCR results. Differential expres-
sion analysis revealed expression of 15,979 genes in the upper 
airway (18).

Data Preprocessing and Development of Predictive Models
The Boruta method was used to select biomarker genes associ-
ated with COVID-19. This process iteratively removes variables 
that have been statistically proven to be less relevant to the re-
sponse (COVID-19 in the current study) (19). Afterward, the 
new dataset was divided with 80% to be used for training and 
20% as a test set. This split was randomly repeated 50 times, 
and the mean scores were calculated to evaluate the models. 
Three models were constructed to predict COVID-19: random 
forest (RF), gradient boosting tree (GBT), and multi-layer per-
ceptron (MLP) models.

The RF method can be used as a classification algorithm to make 
predictions based on numerous decision trees. The cumulative re-
sult of the trees provides a reasonable prediction. The model also 
identifies the most significant variables that explain the dependent 
variable, which frequently leads to improved performance (20, 21). 
In this study, 100 trees were used in the RF model.

The GBT method combines multiple decision trees to make a 
single powerful learner. All trees are connected in a series and 
each tree tries to reduce the error of the previous tree as much 
as possible. Gradient algorithms are often slow to learn from 
data because of this sequential connection, but GBT outperforms 
classical ML approaches (22).

An MLP is a type of neural network that is used to supplement 
feed-forward neural networks. The input layer receives the sig-
nal to be processed. The output layer carries out tasks, such as 
prediction and classification. The actual computational engine of 
the MLP is comprised of an arbitrary number of hidden layers 
that are sandwiched between the input and output levels of the 
MLP. Data flow in the forward direction from the input layer to 
the output layer is like a feed-forward network. Backpropagation 
learning, is used to train the neurons in the MLP. These models 
can approximate any continuous function and solve problems 
that are not linearly separable. Pattern categorization, identifica-
tion, and prediction are among the most common applications 
of MLP (23, 24). The MLP network created in this study is pre-
sented in Figure 1.

The performance of the models created was evaluated accord-
ing to accuracy, F1-score, precision, recall, and area under the 
receiver operating characteristic curve (AUC) criteria and the re-
sults were compared.

Figure 1. Schematic representation of the multi-layer per-
ceptron network created in this study
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Statistical Analyses
Qualitative variables were summarized as numbers and percentages, 
and a chi-squared test was used to analyze the data. Quantitative 
variables were reported as the median and interquartile range (IQR). 
Two groups were compared using the Mann-Whitney U test. A p 
value of <0.05 was considered significant. The Cohen d effect size 
was calculated for variables with a significant p value. The effect size 
was interpreted as a small at 0.20–0.50, medium at 0.50–0.80, 
and large at >0.80 in Mann-Whitney U tests (25). All of the statis-
tical analyses were performed using Python 3.9 (Python Software 
Foundation, Fredericksburg, VA, USA) and IBM SPSS Statistics for 
Windows, Version 26.0 (IBM Corp., Armonk, NY, USA).

RESULTS

Demographic descriptive statistics of the patients are provided in 
Table 1. The median age of the patients with a negative COVID-19 
PCR test result was 54.5 years (IQR: 28.5 years); 74 (52.48%) 
of these patients were female and 67 (47.52%) were male. The 
median age of the patients with a positive COVID-19 PCR test 
result was 44 years (IQR: 28 years); 50 (53.76%) of these patients 
were female and 43 (46.24%) were male. The Boruta feature se-
lection method yielded 15 genes associated with COVID-19 from 
the 15,979 genes identified in the mNGS dataset. Descriptive sta-
tistics for the 15 biomarker candidate genes are given in Table 2.

There were statistically significant differences between the pa-
tient groups that were positive and negative for COVID-19 in 
the PDGFRB, RTN2, TPT1, DUSP6, SCGB3A1, METRNL, 
PCDHB9, DCUN1D3, PCSK5, LGR6, FAM83A, and IFI27 genes 
(p<0.05). The PCSK5, LGR6, FAM83A, and IFI27 genes revealed 
a higher expression level in the COVID-19-positive group; expres-
sion of PDGFRB, RTN2, TPT1, DUSP6, SCGB3A1, METRNL, 
PCDHB9, and DCUN1D3 was lower. The effect size results indi-
cated that the IFI27, TPT1, and FAM83A genes had the greatest 
clinical impact for COVID-19.

Table 3 shows the performance criteria used to evaluate the 
test data set of the RF, GBT, and MLP models. The accuracy, 
F1-score, precision, recall, and AUC values obtained from the 
RF model for the prediction of COVID-19 were 80.9%, 78%, 
72.7%, 84.2%, and 91.7%, respectively. The accuracy, F1-s-
core, precision, recall, and AUC values of the GBT model were 
85.1%, 82.1%, 8%, 84.2%, and 92.1%, respectively. Finally, 
the results of the MLP model were accuracy: 93.6%, F1-score: 
92.7%, precision: 86.4%, recall: 100%, AUC: 97.7%. The MLP 
model outperformed the RF and GBT models for COVID-19 
prediction. The importance coefficients of genes thought to be 
associated with COVID-19 are given in Table 4 and illustrated in 
a graph in Figure 2.

Figure 2. Importance plot of genes associated with coron-
avirus 2019 generated in this study
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Table 1. Descriptive statistics of the demographic characteristics

  Groups  p

  COVID-19 COVID-19 
  negative positive

Gender, n (%)   

 Female 74 (52.48) 50 (53.76) 
0.848*

 Male 67 (47.52) 43 (46.24)

Age, years, median (IQR) 54.5 (28.5) 44 (28) <0.001**

*: Chi-squared test; **: Mann-Whitney U test; COVID-19: Coronavirus 2019; IQR: 

Interquartile range

Table 2. Descriptive statistics and effect size of biomarker candidate 

genes associated with COVID-19

Genes Groups  p* Effect

 COVID-19 COVID-19  
size

 
 negative positive 
 Median (IQR) Median (IQR)

PCSK5 311 (845) 891 (2305) <0.001 0.613

PDGFRB 11 (62) 2 (13) <0.001 0.61

RTN2 32 (68) 15 (33) 0.002 0.439

LGR6 18 (26) 50 (62) <0.001 0.937

TPT1 3438 (7193) 2801 (2854) <0.001 0.968

DUSP6 175 (338) 102 (119) <0.001 0.487

FAM83A 656 (1368) 1700 (2488) <0.001 0.943

SCGB3A1 30 (89) 13 (30) 0.012 0.352

IFI27 254 (465) 1014 (1337) <0.001 1.069

METRNL 148 (278) 80 (96) <0.001 0.608

SIX5 35 (67) 28 (47) 0.227 NS

PCDHB9 9 (20) 3 (7) <0.001 0.506

DCUN1D3 314 (605) 117 (113) <0.001 0.899

MTRNR2L12 18 (106) 15 (33) 0.282 NS 

TBCE 371 (487) 280 (972) 0.548 NS

*: Mann-Whitney U test; COVID-19: Coronavirus 2019; IQR: Interquartile range; 

NS: Not significant
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The IFI27, TPTI, and FAM83A genes explained 19.88%, 
16.53%, and 12.34% of predicted COVID-19, respectively. Th-
ese were the three most important biomarker candidate genes 
associated with COVID-19 (Fig. 2).

DISCUSSION

The effects of COVID-19 did not follow the pattern of many other 
infectious diseases, and wealthier countries with greater health re-
sources were more afflicted than low-income countries with fewer 
health resources. The consequences included broad economic and 
social disruption.

Thorough identification of the virus’s source and genome struc-
ture are imperative to understand and prevent further spread 
and mutation, develop future therapeutic targets, and to en-
sure treatment effectiveness. As disease-causing host genetic 
features are identified, new strategies for addressing this new 
virus can be proposed.

Comprehensive analysis of genomic biomarkers will enable more 
effective large-scale screening and early diagnosis of COVID-19. 
Initial analyses that have identified candidate gene biomarkers 
for COVID-19 must be supplemented with studies to isolate spe-
cific biomarkers suitable for clinical use. The aim of the current 
study was to identify some specific qualitative host biomarkers 
associated with COVID-19 infection using an mNGS dataset to 
contribute to improved clinical diagnosis of COVID-19 and the 
development of new drugs and vaccines.

Analysis of the dataset using the Boruta feature selec-
tion method resulted in the genes IFI27, TPT1, FAM83A, 
SCGB3A1, TBCE, DCUN1D3, PCSK5, PDGFRB, METRNL, 
MTRNR2LI2, LGR6, PCDHBD9, DUSP6, SIX5, and RTN2 
as biomarker candidate genes for COVID-19. Shojaei et al. 
(26) found that IFI27 transcription was an early predictor for 
COVID-19 outcomes. They reported that IFI27 was expressed 
in the respiratory tract of COVID-19 patients and that high 
IFI27 expression was associated with the presence of a high vi-
ral load. They also observed that the systemic host response as 
measured by IFI27 expression was associated with COVID-19 
severity. Our findings indicated that the IFI27 gene was the 
most important gene associated with COVID-19. In another 
study, it was emphasized that the TPT1 gene had an important 
role in the development of COVID-19 (27). We also found that 
the TPT1 gene may be a biomarker candidate. Zhang et al. (28) 
reported that the FAM83A and LGR6 genes were associated 
with the SARS-CoV-2 virus. These were also among the genes 
identified in our study.

Three ML models (RF, GBT, and MLP) were used with a dataset con-
taining selected biomarker genes to examine the ability to distinguish 
between healthy controls and patients with COVID-19 infection. The 
MLP method performed better than the RF and GBT methods in pre-
dicting COVID-19. The performance evaluation revealed accuracy, 
F1-score, precision, recall, and AUC values of 93.6%, 92.7%, 86.4%, 
100%, and 97.7%, respectively for the MLP method. We found that 
the IFI27 (19.88%), TPT1 (16.53%), and FAM83A (12.34%) genes 
were the three most important genes for predicting COVID-19.

CONCLUSION

The selected qualitative biomarker genes are associated with 
COVID-19 and can contribute to distinguishing COVID-19 cases 
from healthy controls. The application of ML can effectively help 
identify potential diagnostic biomarkers and candidate drug targets 
and help establish a standardized workflow for relevant analyses.
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Table 3. Performance measures for models built to predict COVID-19

Models Accuracy F1-score Precision Recall AUC

RF 0.809 0.78 0.727 0.842 0.917

GBT 0.851 0.821 0.800 0.842 0.921

MLP 0.936 0.927 0.864 1.000 0.977

AUC: Area under the receiver operating characteristic curve; GBT: Gradient 

boosting tree; MLP: Multi-layer perceptron; RF: Random forest

Table 4. Importance coefficients of the genes used as input in the MLP 

model

Feature Feature importance

IFI27 0.1988

TPTI 0.1653

FAM83A 0.1234

SCGB3A1 0.09394

TBCE 0.08234

DCUN1D3 0.07485

PCSK5 0.05798

PDGFRB 0.0529

METRNL 0.0444

MTRNR2LI2 0.03839

LGR6 0.02735

PCDHBD9 0.018

DUSP6 0.01266

SIX5 0.00628

RTN2 0.0034

MLP: Multi-layer perceptron
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