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Downregulation of glutaminase 1 (GLS1) Inhibits 
Proliferation, Clonogenicity, and Migration of 
Aggressive MDA-MB-231 Breast Cancer Cells by 
Increasing p21 and Decreasing Integrin-β1 Expression

Objective: Glutamine metabolism is an important pathway in cell proliferation and tumor progression. The first enzyme to 
be converted in the process of glutamine metabolism, glutaminase 1 (GLS1), exhibits increased expression in many types 
of cancer, including breast cancer. Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high 
glutamine metabolic activity. The aim of this research was to examine the effects on glutamine metabolism and carcinogenic 
properties following small interfering RNA (siRNA)-mediated inhibition of GLS1 in glutamine-dependent TNBC.

Materials and Methods: The effects on cell proliferation, migration, apoptosis, colony formation, and the cell cycle of 
MDA-MB-231 cells using different siRNAs targeting GLS1 were analyzed using an MTS assay, a wound-healing assay, clo-
nogenic analysis, and annexin V and propidium iodide staining methods. The protein expression of GLS1, integrin beta 1 
(β1), caspase-3, and p21 were examined using western blot analysis and flow cytometry.

Results: The findings revealed that cell viability, migration, and colony formation were significantly suppressed in MDA-
MB-231 cells transfected with 2 different GLS1 siRNAs. Furthermore, the results of flow cytometry and western blot analysis 
demonstrated that knockdown of GLS1 induced arrest in the G0/G1 phase of the cell cycle through the p21 signaling 
pathway, but did not induce apoptosis.

Conclusion: GLS1 is needed for cell proliferation and promotes tumor progression and growth of MDA-MB 231 cells. 
siRNAs may provide a means to downregulate GLS1 and offer a promising target for breast cancer therapy.
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INTRODUCTION

Triple-negative breast cancer (TNBC) is a hormone receptor-negative metastatic breast cancer that accounts for 
15% to 20% of all breast cancer cases (1). TNBC is very aggressive in comparison with other breast cancer sub-
types, given the tendency for distant tissue metastasis, development of metastases early in the disease, and the 
overall length of survival (1, 2). Since patients with TNBC are estrogen receptor-negative, progesterone receptor-
negative, and human epidermal growth factor receptor 2 (HER2)-negative, HER2-targeted or endocrine therapy 
is not helpful. Chemotherapy is currently the only treatment approach for this patient group. New, specific treat-
ment approaches are needed for the treatment of metastatic TNBC.

Cancer cells need biomolecules and energy to support unlimited growth capacity. Impaired energy metabolism is a 
primary feature of cancer (3). The cells must adjust their metabolism to secure nutrients. The reprogramming of glu-
tamine metabolism has been referred to as glutamine addiction. Glutaminase is a phosphate-dependent mitochon-
drial enzyme involved in the first step of glutamine metabolism (4). This enzyme converts glutamine to glutamate and 
has 2 isoforms: glutaminase 1 (GLS1) and glutaminase 2 (GLS2) (5). GLS1 contributes to cancer progression via 
increased expression in various cancers, such as hepatocellular carcinoma, prostate, breast, and colorectal cancer 
(6–9). Inhibition of GLS1 or glutamine metabolism has been shown to reduce cell growth (proliferation) by inducing 
apoptosis in some cancer cells and animal models of cancer (10–12). In cancer cells exhibiting glutamine depen-
dence, inhibition of the GLS1 enzyme may provide an effective mechanism for the treatment of these cancers.

Breast cancer is heterogeneous and the expression of proteins associated with glutamine metabolism can differ. 
Glutamine requirements vary across different breast cancer molecular subtypes. Some require only an exogenous 
source of glutamine and demonstrate glutamine addiction. TNBC and HER2+ breast cancer subtypes exhibit more 
glutamine addiction than other subtypes (13, 14). Glutamine metabolism appears to contribute to progression in 
breast cancer subtypes. Therefore, it may be that inhibition of glutamine metabolism via GLS1 could be a treat-
ment target to stop tumor progression.

This study examined the role of GLS1, an important enzyme in glutamine metabolism, and its potential utility as 
a target to reduce MDA-MB-231 cell proliferation.
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MATERIALS and METHODS

Study Design
The MDA-MB-231 cells used in this research were obtained from 
the American Type Culture Collection (Manassas, VA, USA) and 
cultured at 37°C in 5% CO

2
. The cells were passaged after achiev-

ing 80% proliferation in a medium of Dulbecco′s Modified Eagle′s 
Medium (DMEM) F12 and 1% penicillin/streptomycin.

Transfection with siRNA
Two forms of small interfering RNA (siRNA) targeting the GLS1 
gene and a control siRNA that does not suppress any gene 
(GLS1#1: SASI-HS01-71581, GLS1#2: SASI-HS01-71573, 
Control: SIC001; MilliporeSigma, Burlington, MA) were pur-
chased. The cells were transfected with the siRNAs with the 
HiPerFect transfection reagent (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions. The siRNA concentration to 
be transfected was based on previous studies (15, 16).

Western Blot Analysis
The cells were seeded at a density of 3.5x105 in 25 cm2 flasks 
in 4 mL of medium. After 24 hours of incubation,they were 
transfected with 50 nM of the siRNAs. At the conclusion of 
a 72-hour transfection period, the cells were harvested and 
protein isolation was performed using the ReadyPrep pro-
tein extraction kit (Bio-Rad, Hercules, CA, USA) according 
to the manufacturer’s instructions. A DC Protein Assay kit 
(BioRad, Hercules, CA) was used to determine the protein 
concentration and was measured using an enzyme linked im-
munosorbent assay reader at 750 nm. Western blot analy-
sis was performed as described in previous studies (15, 16). 
Protein expression was examined using GLS1 (Proteintech 
Group, Rosemont, IL, USA), integrin β1 (Proteintech Group, 
Rosemont, IL, USA), caspase-3 (Proteintech Group, Rose-
mont, IL, USA), and p21 (Santa Cruz Biotechnology, Dallas, 
TX, USA) antibodies. Anti-mouse β-actin primary and sec-
ondary antibodies (Proteintech Group, Rosemont, IL, USA) 
were used as a loading control.

Cell Viability
MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- 
(4-sulfophenyl)-2H-tetrazolium] analysis was conducted to define 
the viability and proliferation of cells after transfection according to 
a previously described method (16).

Colony Formation Assay
Colony formation analysis of the transfected cells was performed 
as previously described (16).

Wound-Healing Assay
A wound-healing (scratch) assay was used as described in previous 
studies to determine whether the migration of cells was affected 
after transfection with siRNAs (15, 16).

Analysis of Apoptosis
Once 300,000 cells had been seeded into 25 cm2 flasks, a Muse 
Annexin V kit (MilliporeSigma, Burlington, MA) was used accord-
ing to the manufacturer’s instructions to detect apoptosis in the 
cells after transfection with siRNAs.

Analysis of Cell Cycle
The cell cycle was assessed using a Muse Cell Cycle Analysis kit 
(MilliporeSigma, Burlington, MA). After seeding 3.5x105 cells in 
culture flasks, they were transfected with 50 nM of the siRNAs for 
72 hours and the cells were analyzed using a Muse Cell Analyzer 
(MilliporeSigma, Burlington, MA) in accordance with the manufac-
turer’s protocol. 

Statistical Analysis
Each laboratory analysis was repeated at least 3 times to ensure 
statistical validity. Prism 6 software (GraphPad Software, San Di-
ego, CA, USA) was used to perform the statistical analyses. The 
results were shown as mean±SD and a 2-sample unpaired t-test 
was used to compare the mean of independent groups. A p value 
of <0.05 was considered statistically significant.
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Figure 1. Glutaminase (GLS1) knockdown with targeted 
small interfering RNAs (siRNAs) inhibited cell viability and 
colony formation in MDA-MB 231 cells. (a, b) Western blot 
analysis results demonstrate significant reduction in GLS1 
protein expression level with GLS1#1 and GLS1#2 siR-
NAs; (c) MTS assay results show evaluation of proliferation/
cell viability. Data were presented as mean±SD. **p<0.01; 
***p<0.001
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RESULTS

Inhibition of GLS1 Protein Decreased Proliferation and 
Colony Formation in MDA-MB 231 Cells
MDA-MB-231 cells were transfected with 2 different GLS1 siR-
NAs and a control siRNA, and 72 hours later, the isolated total 
protein was evaluated using western blot analysis. The expres-
sion of GLS1 protein in cells transfected with GLS1 siRNAs was 
suppressed compared with that of cells transfected with the con-
trol siRNA (p<0.001; Fig. 1a, b). The western blot results indi-
cated that the GLS1 siRNAs provided an effective knockdown of 
GLS1 expression at the protein level and could be used to assess 
GLS1-mediated effects.

It was also observed that the viability of the MDA-MB 231 cells 
transfected with GLS1#1 and GLS1#2 siRNA was significantly re-
duced in comparison with cells transfected with the control siRNA 
(p<0.01; Fig. 1c). In addition, colony formation decreased with the 
application of both of the siRNAs in comparison with the control 
(p<0.001; Fig. 2a, b). These results suggest that GLS1 plays a 
significant role in the growth of MDA-MB 231 cells.

Knockdown of GLS1 Reduced Migration in MDA-MB 231 
Cells
A wound-healing test was performed to assess whether siRNA-me-
diated inhibition of GLS1 affected cell migration of the MDA-MB 
231 cells. The scratch wound area in the cells transfected with 
the control siRNA was completely closed at 48 hours, while the 
migration in cells transfected with the GLS1 siRNAs was limited, 
indicating that inhibition of GLS1 expression reduced migration 
in these cells (Fig. 3a, b). Integrin β1 expression was also assessed 
using western blot analysis. Integrin β1 is a transmembrane glyco-
protein that mediates cell-extracellular matrix interaction and has 

Figure 2. Effects of glutaminase (GLS1) knockdown with 
targeted small interfering RNAs (siRNAs) on colony forma-
tion. (a) Crystal violet staining evaluation of colony forma-
tion; (b). Colony density measurement. The data were pre-
sented as mean±SD, ***p<0.001
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Figure 3. Effects of glutaminase (GLS1) knockdown with 
targeted small interfering RNAs (siRNAs) on cell migration. 
(a). Cells that migrated to the scratch test wound area; (b) 
bar graph of migration percentages from 3 independent ex-
periments. Data are expressed as mean±SD; (c,d). Integrin 
β1 levels after inhibition of GLS1 with siRNAs. Data were 
presented as mean±SD. **p<0.01; ***p<0.001
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a role in cell proliferation, apoptosis, invasion, and migration in 
cancer (17). The findings of this study indicated that the inhibition 
of GLS1 with siRNAs greatly decreased the expression of integrin 
β1 (GLS1#1: p<0.01, GLS1#2: p<0.001; Fig. 3c, d).

Inhibition of GLS1 Did Not Induce Apoptotic Death in 
MDA-MB 231 Cells
An annexin V/PI staining assay used to examine whether GLS1 
had any effect on the survival of MDA-MB231 cells transfected 
with GLS1-specific siRNAs indicated that downregulation of GLS1 
did not induce apoptosis in the MDA-MB-231 cells (p>0.05, Fig. 
4a, b). A western blot analysis revealing protein expression of 
caspase-3 confirmed the results. In the process of apoptosis, initi-
ator caspases (e.g., caspase-8, -9) are activated and stimulate pro-
teolysis of effector caspases (e.g., caspase-3), which cause apop-
tosis by cleaving to multiple cellular substrates (18). Knockdown of 
GLS1 by GLS1 siRNAs did not appear to alter the total caspase-3 
protein level in the cells (p>0.05; Fig. 4c, d). The results of the 
apoptosis assay showed that suppression of GLS1 did not trigger 
apoptotic cell death in MDA-MB-231 cells.

Knockdown of GLS1 Resulted in Arrest of MDA-MB231 
Cell Cycle in the G0/G1 Phases
A significant proportion of MDA-MB 231 cells transfected with 
GLS1#1 and GLS1#2 siRNAs demonstrated arrested devel-
opment in the G0/G1 phase of cell cycle (GLS1#1: p<0.05, 
GLS1#2: p<0.01; Fig. 5a, b). More cells transfected with the 
control siRNA reached the S phase in comparison with those 
transfected with GLS1-targeted siRNAs (p<0.01; Fig. 5a, b). 
There was no statistically significant difference in the number 

that achieved the G2/M phase (p>0.05; Fig. 5a, b). The results 
suggest that the decrease in the proliferation of MDA-MB 231 
cells transfected with GLS1#1 and GLS1#2 siRNAs was related 
to a halt of cell division at the G0/G1 phase due to a reduction in 
energy resulting from GLS1 inhibition. p21 is a cyclin-dependent 
kinase (CDK) inhibitor protein that mediates cell cycle progres-
sion through cyclin D-CDK4/6 and cyclin E-CDK2 complexes, 
which may arrest cells at the G1/S and G2/M transitions of the 
cell cycle (19). Western blot analysis used to assess the p21 pro-
tein expression indicated that inhibition of GLS1 with the siRNAs 
increased the expression of p21 protein (Fig. 5c, d; GLS1#1: 
p<0.01, GLS1#2: p<0.001).

DISCUSSION

Cancer cells disrupt mechanisms controlling cell prolifera-
tion and adjust energy metabolism in order to promote their 
growth and survival (3). One of the changes to the central 
metabolism of most cancer cells is the disruption of glutamine 
metabolism. Some cancer cells, such as TNBC cells, which 
lack progesterone and estrogen receptors and have a low/no 
HER2 expression, need glutamine to proliferate (13). GLS1 is 
expressed in all mammalian tissues except liver tissue and is 
associated with invasive activities and tumor growth in many 
types of cancer (20).

Inhibition of glutaminolysis, or GLS1 activity, has been shown 
to reduce tumor growth in cancer cells and in animal models of 
cancer, as well as induce apoptosis in some studies (7, 11, 12, 
21). Glutamine restriction suppresses cellular growth, stops the 

Figure 4. Effects of Glutaminase (GLS1) knockdown with targeted small interfering RNAs (siRNAs) on apoptosis. (a) An-
nexin V/PI staining assay results; (b) Percentage of apoptotic cells. Data were presented as the mean±SD; (c,d) Inhibition 
of GLS1 with 2 different siRNAs did not change the total caspase-3 protein expression. Data were presented as mean±SD. 
NS: Not significant
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cell cycle at the G1 phase, and causes disruptions in important 
pathways, such as the mammalian target of rapamycin path-
way, leading to an increase in the production of reactive oxygen 
species (22, 23). However, it is not yet precisely known how 
GLS1 inhibition affects the carcinogenic properties of cancer 
cells. Additional studies are needed to discover the full potential 
therapeutic role of GLS1 in cancer treatment.

In this study, we determined that the inhibition of GLS1 with 
GLS1 targeted siRNAs reduced the proliferation, clonogenicity, 
and migration in triple-negative MDA-MB 231 cells. The results 
appear to confirm that GLS1 contributes to proliferation, mi-
gration, and colony formation in MDA-MB 231 cells.

It has been reported that glutamine metabolism, or GLS1 activ-
ity, reduced cancer cell proliferation by inducing an apoptosis 
mechanism in some cancers, such as head and neck cancer (12), 
colorectal cancer (7), ovarian cancer (24), acute myeloid leuke-
mia (AML) (10), hepatocellular carcinoma (11), and xenograft 
tumor models generated by injecting AML cells (21). Reports 
have also demonstrated suppression using small molecule inhib-
itors or RNA interference (20, 22). Gross et al. (6) examined the 
glutaminase inhibitor CB-839 in TNBC cell lines and found that 
this inhibitor, which has multiple cytotoxic effects on enzymes 
and transporters using glutamine, induced apoptosis of MDA-
MB-231 cells (6). In contrast, Lampa et al. (25) demonstrated 
that inhibition of GLS1 with short hairpin RNA did not induce 
apoptosis in breast cancer MDA-MB-231 cells (25). Similarly, 
our study indicated that downregulation of GLS1 via GLS1-siR-
NAs inhibited the proliferation of MDA-MB 231 cells, but did 
not induce apoptosis, according to annexin V apoptosis analysis 
and apoptotic protein caspase-3 expression findings.

Glutamine limitation has been reported to suppress cellular 
growth and stop cell growth in the G0/G1 phase of the cell 

cycle in studies of non-small-cell lung cancer and ovarian cancer 
(22, 26). Our findings that the cell cycle of MDA-MB 231 cells 
was arrested in the G0/G1 phase with inhibition of GLS1 was 
consistent with this earlier research. In addition, we observed 
that the expression level of p21 protein, an important modula-
tor of the cell cycle, increased in MDA-MB 231 cells with GLS1 
inhibition. The results of this study indicated that the suppres-
sion of glutamine metabolism blocked the energy source of the 
cell and led to a halt at the G0/G1 phase.

In studies of lung, pancreatic, ovarian, and colorectal can-
cers, GLS1 has been shown to contribute to colony formation 
(26–29), migration, and invasion (24, 27–30). Our findings 
also showed that GLS1 was involved in proliferation, colony 
formation, and migration of MDA-MB 231 cells. Furthermore, 
we demonstrated that downregulation of GLS1 decreased inte-
grin-β1 expression in MDA-MB-231 cells. Integrin-β1 appears 
to be an important mediator in breast cancer progression and 
initiation (17). Our findings suggest that GLS1 contributes to 
the expression of mediators promoting cell proliferation and 
migration in MDA-MB-231 cells.

CONCLUSION

Evaluation of other studies of GLS1 along with the results of our 
study indicate that GLS1 appears to have a critical function in 
cancer cell proliferation, cellular survival, migration, and tumor-
igenesis. GLS1 plays an important part in glutamine-addicted 
cancers due to its role in cellular bioenergetic pathways and the 
first step of glutamine energy metabolism, which plays a role in 
biomolecule synthesis. Downregulation of GLS1 to inhibit ag-
gressive progression may be a molecular target for therapy of 
breast cancer cells such as MDA-MB 231 cells with high gluta-
mine metabolism.

Figure 5. Effects of glutaminase (GLS1) knockdown with targeted small interfering RNAs (siRNAs) on cell cycle stage. 
(a,b) The percentage of cells in cell cycle phases. The data were presented as the mean±SEM from 3 experiments; (c,d) In-
creased p21 protein expression. Data were presented as mean±SD. *p<0.05; **p<0.01; ***p<0.001. NS: Non-significant
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